SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Drevon Christian A) "

Sökning: WFRF:(Drevon Christian A)

  • Resultat 11-20 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Fjell, Anders M., et al. (författare)
  • Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline-Results From the Lifebrain Consortium
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:4, s. 1953-1969
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18-92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. "PSQI # 1 Subjective sleep quality" and "PSQI #5 Sleep disturbances" were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with "PSQI #5 Sleep disturbances" emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
  •  
12.
  • Fragoso-Bargas, N, et al. (författare)
  • Cross-Ancestry DNA Methylation Marks of Insulin Resistance in Pregnancy : An Integrative Epigenome Wide Association Study
  • 2023
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 72:3, s. 415-426
  • Tidskriftsartikel (refereegranskat)abstract
    • Although there are some epigenome-wide association studies (EWAS) of insulin resistance, most of them did not replicate their findings and are focused in populations of European ancestry limiting the generalizability. In EPIPREG (294 Europeans and 162 South Asians), we conducted an EWAS of insulin resistance in maternal peripheral blood leukocytes, with replication in Born in Bradford (n=879; 430 Europeans and 449 South Asians), MENA (n=320) and Botnia (n=56) cohorts. In EPIPREG, we identified six CpG sites inversely associated with insulin resistance across ancestry, whereof five were replicated in independent cohorts (cg02988288, cg19693031, and cg26974062 in TXNIP, cg06690548 in SLC7A11, cg04861640 in ZSCAN26). From methylation quantitative trait loci analysis in EPIPREG, we identified gene variants related to all five replicated cross-ancestry CpG sites, which were associated with several cardiometabolic phenotypes. Mediation analyses suggested that the gene variants regulate insulin resistance through DNA methylation. To conclude, our cross-ancestry EWAS identified five CpG sites related with lower insulin resistance.
  •  
13.
  • Garcia-Rios, Antonio, et al. (författare)
  • Genetic variations at the lipoprotein lipase gene influence plasma lipid concentrations and interact with plasma n-6 polyunsaturated fatty acids to modulate lipid metabolism
  • 2011
  • Ingår i: Atherosclerosis. - : Elsevier BV. - 0021-9150 .- 1879-1484. ; 218:2, s. 416-422
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To investigate whether seven common single nucleotide polymorphisms (SNPs) at the lipoprotein lipase (LPL) locus interact with total plasma fatty acids to modulate plasma lipid metabolism in metabolic syndrome (MetS) patients. Methods: Plasma fatty acid composition, plasma lipid concentrations and LPL SNPs were determined in 452 subjects with the MetS in the European LIPGENE human study and were repeated in 1754 subjects from the LIPGENE-SU.VI.MAX Study. Results: Triglycerides (TG) were lower, and HDL higher in the carriers of rs328 and rs1059611 in the SUVIMAX cohort (all P < 0.001), and these findings showed a similar, non-significant trend in LIPGENE cohort. In this last cohort, we found a gene-fatty acids interaction, as the carriers of the minor allele displayed a lower fasting TG and triglyceride rich lipoproteins-TG (TRL-TG) concentrations only when they had n-6 polyunsaturated fatty acids below the median (all P < 0.05). Moreover, subjects carrying the minor allele for rs328 SNP and with a low level of n-6 PUFA displayed higher nonesterified fatty acid (NEFA) plasma concentrations as compared with homozygous for the major allele (P = 0.034). Interestingly, the n-6 PUFA-dependent associations between those SNPs and TG metabolism were also replicated in subjects without MetS from the SU.VI.MAX cohort. Conclusion: Two genetic variations at the LPL gene (rs328 and rs1059611) influence plasma lipid concentrations and interact with plasma n-6 PUFA to modulate lipid metabolism. The knowledge of new genetic factors together with the understanding of these gene-nutrient interactions could help to a better knowledge of the pathogenesis in the MetS. 
  •  
14.
  • Gulseth, Hanne L., et al. (författare)
  • Effects of dietary fat on insulin secretion in subjects with the metabolic syndrome
  • 2019
  • Ingår i: European Journal of Endocrinology. - : BIOSCIENTIFICA LTD. - 0804-4643 .- 1479-683X. ; 180:5, s. 321-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Impaired insulin secretion and action contribute to the development of type 2 diabetes. Dietary fat modification may improve insulin sensitivity, whereas the effect on insulin secretion is unclear. We investigated the effect of dietary fat modification on insulin secretion in subjects with the metabolic syndrome.Design: In a 12-week pan-European parallel, randomized controlled dietary intervention trial (LIPGENE), 486 subjects were assigned to four isoenergetic diets: high-fat diets rich in saturated fat (HSFA) or monounsaturated fat (HMUFA) or low-fat, high-complex carbohydrate diets with (LFHCC n-3) or without (LFHCC control) 1.2 g/day of n-3 PUFA supplementation. Insulin secretion was estimated as acute insulin response to glucose (AIRg) and disposition index (DI), modeled from an intravenous glucose tolerance test.Results: There were no overall effect of the dietary intervention on AIRg and DI in the total cohort, in neither the highfat nor LFHCC groups. We observed significant diet*fasting glucose category interactions for AIRg (P = 0.021) and DI (P = 0.001) in the high-fat groups. In subjects with normal fasting glucose and preserved first phase insulin secretion, the HMUFA diet increased, whereas the HSFA diet reduced AIRg (P = 0.015) and DI (P = 0.010).Conclusions: The effects of dietary fat modification on insulin secretion were minor, and only evident in normoglycemic subjects. In this case, the HMUFA diet improved AIRg and DI, as compared to the HSFA diet.
  •  
15.
  • Gulseth, Hanne L., et al. (författare)
  • Serum Vitamin D Concentration Does Not Predict Insulin Action or Secretion in European Subjects With the Metabolic Syndrome
  • 2010
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 33:4, s. 923-925
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE To investigate the relation between serum concentration of 25-hydroxyvitamin D [25(OH)D] and insulin action and secretion. RESEARCH DESIGN AND METHODS In a cross-sectional study of 446 Pan-European subjects with the metabolic syndrome, insulin action and secretion were assessed by homeostasis model assessment (HOMA) indexes and intravenous glucose tolerance test to calculate acute insulin response, insulin sensitivity, and disposition index. Serum 25(OH)D was measured by high-performance liquid chromatography/mass spectrometry. RESULTS - The 25(OH)D-3 concentration was 57.1 +/- 26.0 nmol/l (mean +/- SD), and only 20% of the subjects had 25(OH)D-3 levels >= 75 nmol/l. In multiple linear analyses, 25(OH)D-3 concentrations were not associated with parameters of insulin action or secretion after adjustment for BMI and other covariates. CONCLUSIONS In a large sample of subjects with the metabolic syndrome, serum concentrations of 25(OH)D-3 did not predict insulin action or secretion. Clear evidence that D vitamin status directly influences insulin secretion or action is still lacking.
  •  
16.
  • Perez-Martinez, Pablo, et al. (författare)
  • Calpain-10 interacts with plasma saturated fatty acid concentrations to influence insulin resistance in individuals with the metabolic syndrome
  • 2011
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 93:5, s. 1136-1141
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic beta cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of beta cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials. gov as NCT00429195.
  •  
17.
  • Perez-Martinez, Pablo, et al. (författare)
  • Gene-nutrient interactions on the phosphoenolpyruvate carboxykinase influence insulin sensitivity in metabolic syndrome subjects
  • 2013
  • Ingår i: Clinical Nutrition. - : Elsevier BV. - 0261-5614 .- 1532-1983. ; 32:4, s. 630-635
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & aims: Genetic background may interact with habitual dietary fat composition, and affect development of the metabolic syndrome (MetS). The phosphoenolpyruvate carboxykinase gene (PCK1) plays a significant role regulating glucose metabolism, and fatty acids are key metabolic regulators, which interact with transcription factors and influence glucose metabolism. We explored genetic variability at the PCK1 gene locus in relation to degree of insulin resistance and plasma fatty acid levels in MetS subjects. Moreover, we analyzed the PCK1 gene expression in the adipose tissue of a subgroup of MetS subjects according to the PCK1 genetic variants. Methods: Insulin sensitivity, insulin secretion, glucose effectiveness, plasma concentrations of C-peptide, fatty acid composition and three PCK1 tag-single nucleotide polymorphisms (SNPs) were determined in 443 MetS participants in the UPGENE cohort. Results: The rs2179706 SNP interacted with plasma concentration of n - 3 polyunsaturated fatty acids (n - 3 PUFA), which were significantly associated with plasma concentrations of fasting insulin, peptide C, and HOMA-IR. Among subjects with n - 3 PUFA levels above the population median, carriers of the C/C genotype exhibited lower plasma concentrations of fasting insulin (P = 0.036) and HOMA-IR (P = 0.019) as compared with C/C carriers with n - 3 PUFA below the median. Moreover, homozygous C/C subjects with n - 3 PUFA levels above the median showed lower plasma concentrations of peptide C as compared to individuals with the T-allele (P = 0.006). Subjects carrying the T-allele showed a lower gene PCK1 expression as compared with carriers of the C/C genotype (P = 0.015). Conclusions: The PCK1 rs2179706 polymorphism interacts with plasma concentration of n - 3 PUFA levels modulating insulin resistance in MetS subjects. 
  •  
18.
  • Perez-Martinez, Pablo, et al. (författare)
  • Glucokinase Regulatory Protein Genetic Variant Interacts with Omega-3 PUFA to Influence Insulin Resistance and Inflammation in Metabolic Syndrome
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:6, s. e20555-
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective: To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design: Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results: Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions: We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.
  •  
19.
  • Perez-Martinez, Pablo, et al. (författare)
  • Insulin receptor substrate-2 gene variants in subjects with metabolic syndrome : Association with plasma monounsaturated and n-3 polyunsaturated fatty acid levels and insulin resistance
  • 2012
  • Ingår i: Molecular Nutrition & Food Research. - : Wiley. - 1613-4125 .- 1613-4133. ; 56:2, s. 309-315
  • Tidskriftsartikel (refereegranskat)abstract
    • Scope: Several insulin receptor substrate-2 (IRS-2) polymorphisms have been studied in relation to insulin resistance and type 2 diabetes. To examine whether the genetic variability at the IRS-2 gene locus was associated with the degree of insulin resistance and plasma fatty acid levels in metabolic syndrome (MetS) subjects.Methods and results: Insulin sensitivity, insulin secretion, glucose effectiveness, plasma fatty acid composition and three IRS-2 tag-single nucleotide polymorphisms (SNPs) were determined in 452 MetS subjects. Among subjects with the lowest level of monounsaturated (MUFA) (below the median), the rs2289046 A/A genotype was associated with lower glucose effectiveness (p < 0.038), higher fasting insulin concentrations (p < 0.028) and higher HOMA IR (p < 0.038) as compared to subjects carrying the minor G-allele (A/G and G/G). In contrast, among subjects with the highest level of MUFA (above the median), the A/A genotype was associated with lower fasting insulin concentrations and HOMA-IR, whereas individuals carrying the G allele and with the highest level of omega-3 polyunsaturated fatty acids (above the median) showed lower fasting insulin (p < 0.01) and HOMA-IR (p < 0.02) as compared with A/A subjects.Conclusion: The rs2289046 polymorphism at the IRS2 gene locus may influence insulin sensitivity by interacting with certain plasma fatty acids in MetS subjects.
  •  
20.
  • Phillips, Catherine M., et al. (författare)
  • ACC2 gene polymorphisms, metabolic syndrome, and gene-nutrient interactions with dietary fat
  • 2010
  • Ingår i: Journal of Lipid Research. - 0022-2275 .- 1539-7262. ; 51:12, s. 3500-3507
  • Tidskriftsartikel (refereegranskat)abstract
    • Acetyl-CoA carboxylase beta (ACC2) plays a key role in fatty acid synthesis and oxidation pathways. Disturbance of these pathways is associated with impaired insulin responsiveness and metabolic syndrome (MetS). Gene-nutrient interactions may affect MetS risk. This study determined the relationship between ACC2 polymorphisms (rs2075263, rs2268387, rs2284685, rs2284689, rs2300453, rs3742023, rs3742026, rs4766587, and rs6606697) and MetS risk, and whether dietary fatty acids modulate this in the LIPGENE-SU. VI.MAX study of MetS cases and matched controls (n = 1754). Minor A allele carriers of rs4766587 had increased MetS risk (OR 1.29 [CI 1.08, 1.58], P = 0.0064) compared with the GG homozygotes, which may in part be explained by their increased body mass index (BMI), abdominal obesity, and impaired insulin sensitivity (P < 0.05). MetS risk was modulated by dietary fat intake (P = 0.04 for gene-nutrient interaction), where risk conferred by the A allele was exacerbated among individuals with a high-fat intake (>35% energy) (OR 1.62 [CI 1.05, 2.50], P = 0.027), particularly a high intake (>5.5% energy) of n-6 polyunsaturated fat (PUFA) (OR 1.82 [CI 1.14, 2.94], P = 0.01; P = 0.05 for gene-nutrient interaction). Saturated and monounsaturated fat intake did not modulate MetS risk. Importantly, we replicated some of these findings in an independent cohort.jlr In conclusion, the ACC2 rs4766587 polymorphism influences MetS risk, which was modulated by dietary fat, suggesting novel gene-nutrient interactions.-Phillips, C. M., L. Goumidi, S. Bertrais, M. R. Field, L. Adrienne Cupples, J. M. Ordovas, J. McMonagle, C. Defoort, J. A. Lovegrove, C. A. Drevon, E. E. Blaak, B. Kiec-Wilk, U. Riserus, J. Lopez-Miranda, R. McManus, S. Hercberg, D. Lairon, R. Planells, and H. M. Roche. ACC2 gene polymorphisms, metabolic syndrome, and gene-nutrient interactions with dietary fat.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 42
Typ av publikation
tidskriftsartikel (42)
Typ av innehåll
refereegranskat (42)
Författare/redaktör
Drevon, Christian A. (42)
Roche, Helen M. (23)
Blaak, Ellen E. (22)
Lovegrove, Julie A. (21)
Defoort, Catherine (21)
Lopez-Miranda, Jose (20)
visa fler...
Risérus, Ulf (18)
Kiec-Wilk, Beata (15)
Karlström, Brita (13)
Nyberg, Lars, 1966- (12)
Bartrés-Faz, David (12)
Fjell, Anders M. (12)
Walhovd, Kristine B. (12)
Brandmaier, Andreas ... (11)
Perez-Martinez, Pabl ... (11)
Tierney, Audrey C. (11)
Gjelstad, Ingrid M F (11)
Lindenberger, Ulman (10)
Ebmeier, Klaus P. (10)
Helal, Olfa (10)
Saris, Wim H. M. (9)
Solé-Padullés, Crist ... (9)
Delgado-Lista, Javie ... (9)
Zsoldos, Eniko (8)
Baaré, William F.C. (8)
Gulseth, Hanne L. (8)
Garcia-Rios, Antonio (8)
Phillips, Catherine ... (8)
Düzel, Sandra (7)
Madsen, Kathrine Ska ... (7)
Suri, Sana (7)
Sørensen, Øystein (7)
Dembinska-Kiec, Aldo ... (7)
Kühn, Simone (7)
Ghisletta, Paolo (7)
Boraxbekk, Carl-Joha ... (6)
Mowinckel, Athanasia ... (6)
Shaw, Danielle I (6)
Amlien, Inge K. (6)
Pudas, Sara, Docent, ... (5)
Ordovás, José M. (5)
Ferguson, Jane F (5)
Lairon, Denis (5)
Planells, Richard (5)
Watne, Leiv Otto (4)
Penninx, Brenda W J ... (4)
Bertram, Lars (4)
Vidal-Piñeiro, Didac (4)
Wang, Yunpeng (4)
Demuth, Ilja (4)
visa färre...
Lärosäte
Uppsala universitet (25)
Umeå universitet (13)
Göteborgs universitet (4)
Lunds universitet (2)
Chalmers tekniska högskola (2)
Karolinska Institutet (2)
visa fler...
Högskolan i Halmstad (1)
Stockholms universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (42)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (21)
Naturvetenskap (2)
Samhällsvetenskap (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy