SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edsjö Joakim) "

Sökning: WFRF:(Edsjö Joakim)

  • Resultat 41-50 av 64
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Lundström, Erik, 1980- (författare)
  • Phenomenology of Inert Scalar and Supersymmetric Dark Matter
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • While the dark matter has so far only revealed itself through the gravitational influence it exerts on its surroundings, there are good reasons to believe it is made up by WIMPs – a hypothetical class of heavy elementary particles not encompassed by the Standard Model of particle physics. The Inert Doublet Model constitutes a simple extension of the Standard Model Higgs sector. The model provides a new set of scalar particles, denoted inert scalars because of their lack of direct coupling to matter, of which the lightest is a WIMP dark matter candidate. Another popular Standard Model extension is that of supersymmetry. In the most minimal scenario the particle content is roughly doubled, and the lightest of the new supersymmetric particles, which typically is a neutralino, is a WIMP dark matter candidate. In this thesis the phenomenology of inert scalar and supersymmetric dark matter is studied. Relic density calculations are performed, and experimental signatures in indirect detection experiments and accelerator searches are derived. The Inert Doublet Model shows promising prospects for indirect detection of dark matter annihilations into monochromatic photons. It is also constrained by the old LEP II accelerator data. Some phenomenological differences between the Minimal Supersymmetric Standard Model and a slight extension, the Beyond the Minimal Supersymmetric Standard Model, can be found. Also, supersymmetric dark matter models can be detected already within the early LHC accelerator data.
  •  
42.
  • Niblaeus, Carl, et al. (författare)
  • Effect of polarisation and change of event generator on dark matter annihilation fluxes
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • If indirect detection searches are to be used to discriminate between dark matter particle models, it is crucial to understand the expected energy spectra of secondary particles such as neutrinos, charged antiparticles and gamma rays emerging from dark matter annihilations in the local Universe. We simulate the dark matter annihilation processes and collect the fluxes of the stable end products in the annihilation. In order to get an estimate of the impact of different modelling of the physics in the annihilation process, we compare fluxes obtained with two popular event generators, Pythia8 and Herwig7. We also consider the possible impact of polarisation of the final state in the annihilation, with a specific focuson the impact on neutrino fluxes from dark matter annihilations in the centre of the Sun. We find that differences between the event generators are larger for yields of hadronic end products such as antiprotons, than for leptonic end products. Concerning polarisation, we conversely find the largest differences in the leptonic spectra. We find that for neutrino fluxes from dark matter annihilations in the Sun, differences between the polarisations of the final state are to some extent washed out by neutrino oscillations and interactions in the Sun.
  •  
43.
  • Niblaeus, Carl, et al. (författare)
  • Effect of polarisation and choice of event generator on spectra from dark matter annihilations
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :10
  • Tidskriftsartikel (refereegranskat)abstract
    • If indirect detection searches are to be used to discriminate between dark matter particle models, it is crucial to understand the expected energy spectra of secondary particles such as neutrinos, charged antiparticles and gamma rays emerging from dark matter annihilations in the local Universe. In this work we study the effect that both the choice of event generator and the polarisation of the final state particles can have on these predictions. For a variety of annihilation channels and dark matter masses, we compare yields obtained with Pythia8 and Herwig7 of all of the aforementioned secondary particle species. We investigate how polarised final states can change these results and do an extensive study of how the polarisation can impact the expected flux of neutrinos from dark matter annihilations in the centre of the Sun. We find that differences between the event generators are larger for yields of hadronic end products such as antiprotons, than for leptonic end products. Concerning polarisation, we conversely find the largest differences in the leptonic spectra. The large differences in the leptonic spectra point to the importance of including polarisation effects in searches for neutrinos from dark matter annihilations in the Sun. However, we find that these differences are ultimately somewhat washed out by propagation effects of the neutrinos in the Sun.
  •  
44.
  • Niblaeus, Carl, et al. (författare)
  • Neutrinos and gamma rays from long-lived mediator decays in the Sun
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - 1475-7516.
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate a scenario where dark matter (DM) particles can be captured and accumulate in the Sun, and subsequently annihilate into a pair of long-lived mediators. These mediators can decay further out in the Sun or outside of the Sun. Compared to the standard scenario where DM particles annihilate directly into Standard Model particles close to the solar core, here we also obtain fluxes of gamma rays and charged cosmic rays. We simulate this scenario using a full three-dimensional model of the Sun, and include interactions and neutrino oscillations. In particular, we perform a model-independent study of the complementarity between neutrino and gamma ray fluxes by comparing the recent searches from IceCube, Super-Kamiokande, Fermi-LAT, ARGO and HAWC.We find that the resulting neutrino fluxes are significantly higher at high energy when the mediators decay further out in the Sun. We also find that gamma ray searches place stronger constraints than neutrino searches on these models even in cases where the mediators decay mainly inside the Sun, except in the approximately inner 10% of the Sun where neutrino searches are more powerful. We present our results in a model-independent manner and release a new version of the WimpSim code that can be used to simulate this scenario for arbitrary mediator models.
  •  
45.
  • Niblaeus, Carl, et al. (författare)
  • Neutrinos and gamma rays from long-lived mediator decays in the Sun
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate a scenario where dark matter (DM) particles can be captured and accumulate in the Sun, and subsequently annihilate into a pair of long-lived mediators. These mediators can decay further out in the Sun or outside of the Sun. Compared to the standard scenario where DM particles annihilate directly into Standard Model particles close to the solar core, here we also obtain fluxes of gamma rays and charged cosmic rays. We simulate this scenario using a full three-dimensional model of the Sun, and include interactions and neutrino oscillations. In particular, we perform a model-independent study of the complementarity between neutrino and gamma ray fluxes by comparing the recent searches from IceCube, Super-Kamiokande, Fermi-LAT, ARGO and HAWC. We find that the resulting neutrino fluxes are significantly higher at high energy when the mediators decay further out in the Sun. We also find that gamma ray searches place stronger constraints than neutrino searches on these models even in cases where the mediators decay mainly inside the Sun, except in the approximately inner 10% of the Sun where neutrino searches are more powerful. We present our results in a model-independent manner and release a new version of the WimpSim code that can be used to simulate this scenario for arbitrary mediator models.
  •  
46.
  • Niblaeus, Carl, 1988- (författare)
  • Studies of dark matter annihilation and production in the Universe
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this PhD thesis we investigate various aspects of particle dark matter. The proper identification of dark matter developed during the second half of the twentieth century to become one of the biggest endeavours in modern physics and astronomy. Although observations currently favour the explanation that dark matter consists of a new form of particle, no experimental search has yet provided unequivocal evidence of such a particle. Of particular importance in this thesis is the field of indirect detection of dark matter, where one searches for the particles emerging from annihilations of dark matter particles out in the Universe. Specifically, we consider dark matter annihilations in the centre of the Sun. As the Sun moves through the galaxy, some dark matter particles scatter in the Sun and lose enough energy to become bound to the Sun. They settle in the solar core and begin to annihilate, which leads to an annihilation signal from the solar direction.The thesis is built on novel research consisting of three papers and a monograph-type chapter. In the first paper we calculate the flux of high energy neutrinos coming from cosmic ray cascades in the solar atmosphere and investigate the role it plays as a background in solar dark matter searches. In the second paper we consider dark matter annihilating into long-lived mediators in the Sun, which leads to interesting new detection possibilities. A third paper explores more generally the fluxes of secondary particles from dark matter annihilations that are searched for in indirect detection. We look at the effects of changing the Monte Carlo event generator that generates the fluxes and of having polarized final states in the annihilations. Finally, we consider in a monograph-type chapter the production of dark matter in the early Universe through the freeze-out mechanism, looking at effects of higher order corrections in the calculation of the relic abundance in the minimal supersymmetric standard model.
  •  
47.
  • Niblaeus, Carl (författare)
  • The Sun as a laboratory for particle physics
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the paper attached to this thesis, Paper I, we have calculated the flux of neutrinos that emanate from cosmic ray collisions in the solar atmosphere. These neutrinos are created in the cascades that follow the primary collision and can travel from their production point to a detector on Earth, interacting with the solar material and oscillating on the way. The motivation is both a better understanding of the cosmic ray interactions in the solar environment but also the fact that this neutrino flux presents an almost irreducible background for the searches for neutrinos from annihilations between dark matter particles in the Sun’s core.This interesting connection between neutrinos and dark matter make use of the Sun as a laboratory to investigate new models of particle physics. If dark matter consists of weakly interacting massive particles (WIMPs), the Sun will sweep up some of these WIMPs when it moves through the halo of dark matter that our galaxy lies in. These WIMPs will become gravitationally bound to the Sun and over time accumulate in the Sun’s core. In most models WIMPs can annihilate to Standard Model particles when encountering each other. The only particle that can make it out of the Sun without being absorbed is the neutrino. The buildup of WIMPs in the solar interior can therefore lead to a detectable flux of neutrinos.Neutrino telescopes therefore search for an excess of neutrinos from the Sun. To be able to ensure that a detected flux is in fact coming from dark matter annihilations one must properly account for all other sources of neutrinos. At higher energies these are primarily neutrinos created in energetic collisions between cosmic rays and particles in the Earth’s atmosphere, but also the solar atmospheric neutrinos. The latter will be tougher to disentangle from a WIMP signal since they also come from the Sun.We calculate in Paper I the creation of the neutrinos in the solar atmosphere and propagate these neutrinos to a detector on Earth, including oscillations and interactions in the Sun and vacuum oscillations between the Sun and the Earth. We find that the expected flux is small but potentially detectable by current neutrino telescopes, although further studies are needed to fully ascertain the possibility of discovery as well as how to properly disentangle this from a potential WIMP-induced neutrino signal. 
  •  
48.
  • Renk, Janina J., 1990- (författare)
  • Delving in the Dark : Searching for Signatures of Non-Standard Physics in Cosmological and Astrophysical Observables
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The dark sectors of our Universe, dark matter and dark energy, together constitute about 96 % of the total energy content of the Universe. To date, we only have observational evidence for their existence. What is still lacking is a complete theoretical framework consistent with all observational data to embed a dark matter particle or component into the standard models of particle physics and cosmology, as well as an explanation for the nature or origin of dark energy.Since the discovery of these dark components decades ago, a variety of different theories have been proposed to overcome the shortcomings of our current standard models. To assess the viability of these non-standard theories, they ideally should be tested against all relevant available datasets. In this thesis, I show two examples of how cosmological and astrophysical observables are used to constrain or even rule out non-standard cosmological models. Further, I present the first software tool that provides a general framework to test non-standard physics with global fits to data from particle physics and cosmology simultaneously.The first example is minimally coupled covariant Galileons, a modification of General Relativity to explain dark energy without the need for a fine-tuned cosmological constant. I demonstrate how the combination of constraints arising from the integrated Sachs-Wolf effect and the propagation speed of gravitational waves can rule out all three branches of the theory.The second example shows how the existence and parameter space of cosmic superstrings can be constrained. These are the hypothesised fundamental building blocks of Type IIb Superstring theory, stretched out to cosmological scales during the phase of inflation. The theory can be tested through the unique microlensing signature of cosmic superstrings when crossing the line of sight of an observer monitoring a point-like source. I show how, based on simulations, we can estimate the expected detection rates from observations of distant Type Ia Supernovae and stars in Andromeda; from these estimates I assess the implications for the theory.Finally, I present CosmoBit, a new module for the Global and Modular Beyond-Standard Model Inference Tool (GAMBIT). \gambit allows the user to test a variety of extensions to the Standard Model of particle physics against data from, e.g. collider searches, dark matter direct and indirect detection experiments, as well as laboratory measurements of neutrino properties. CosmoBit augments this with the inclusion of cosmological likelihoods. This addition opens up the possibility to test a given model against data from, e.g. the Big Bang Nucleosynthesis proceeding minutes after the Big Bang, probes of the Cosmic Microwave Background ~ 380,000 years later, and (laboratory) measurements from the present day, 13.8 billion years after the Big Bang. Including measurements that span several different epochs and orders of magnitude in energy, the combination of CosmoBit with other GAMBIT modules provides a promising tool for shedding light on the dark sectors of the Universe.
  •  
49.
  • Rydbeck, Sara, 1981- (författare)
  • Phenomenological Studies in Cosmoparticle Physics : Expansion Histories in non-Einstein Gravity and Dark Matter at the Large Hadron Collider
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • As the Big Bang model has become established, the fields of cosmology and particle physics have become intertwined. A range of observations forces us to consider the phenomena of dark matter and dark energy. This interpretation is based on our understanding of gravity, while the standard model of particle physics describes the other fundamental forces in nature and fails to explain the dark components. This thesis includes two different types of studies where hypotheses of physics beyond the standard models of particle physics and cosmology are faced with what observations and experiments can tell us. The first one deals with the possibility that our theory of gravity is what has to be modified at large distances to explain the dark energy, which then need not be a contribution to the energy content at all. The expansion histories in two such frameworks are tested with data from type Ia supernovae and measurements of the baryon acoustic peak in the galaxy distribution as well as in the cosmic microwave background. The second type of study concerns the possibility of establishing the particle nature of dark matter through interactions other than gravitational. While there are ways of doing this using astrophysical observations, the uncertainties due to astrophysics and the unknown distribution of the dark matter are large. High energy particle colliders provide a way of imitating the conditions of the early universe in the laboratory, where we can hope to produce yet unknown heavy particle states and in a more controlled environment determine their properties. We study the prospects for discovering two types of weakly interacting dark matter candidates at the CERN Large Hadron Collider.
  •  
50.
  • Schelke, Mia, 1972- (författare)
  • Supersymmetric Dark Matter : aspects of sfermion coannihilations
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • There is very strong evidence that ordinary matter in the Universe is outweighed by almost ten times as much so-called dark matter. Dark matter does neither emit nor absorb light and we do not know what it is. One of the theoretically favoured candidates is a so-called neutralino from the supersymmetric extension of the Standard Model of particle physics.A theoretical calculation of the expected cosmic neutralino density must include the so-called coannihilations. Coannihilations are particle processes in the early Universe with any two supersymmetric particles in the initial state and any two Standard Model particles in the final state. In this thesis we discuss the importance of these processes for the calculation of the relic density. We will go through some details in the calculation of coannihilations with one or two so-called sfermions in the initial state. This includes a discussion of Feynman diagrams with clashing arrows, a calculation of colour factors and a discussion of ghosts in non-Abelian field theory. Supersymmetric models contain a large number of free parameters on which the masses and couplings depend. The requirement, that the predicted density of cosmic neutralinos must agree with the density observed for the unknown dark matter, will constrain the parameters. Other constraints come from experiments which are not related to cosmology. For instance, the supersymmetric loop contribution to the rare b -> sγ decay should agree with the measured branching fraction. The principles of the calculation of the rare decay are discussed in this thesis. Also on-going and planned searches for cosmic neutralinos can constrain the parameters. In one of the accompanying papers in the thesis we compare the detection prospects for several current and future searches for neutralino dark matter.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 64
Typ av publikation
tidskriftsartikel (34)
doktorsavhandling (11)
konferensbidrag (7)
licentiatavhandling (5)
annan publikation (4)
bokkapitel (2)
visa fler...
proceedings (redaktörskap) (1)
visa färre...
Typ av innehåll
refereegranskat (40)
övrigt vetenskapligt/konstnärligt (23)
populärvet., debatt m.m. (1)
Författare/redaktör
Edsjö, Joakim (49)
Scott, Pat (14)
Bringmann, Torsten (12)
Conrad, Jan (11)
Edsjö, Joakim, Profe ... (11)
Bergström, Lars (10)
visa fler...
Savage, Christopher (9)
White, Martin (7)
Athron, Peter (6)
Balazs, Csaba (6)
Martinez, Gregory D. (5)
Jackson, Paul (5)
Mahmoudi, Farvah (5)
Krislock, Abram (5)
Buckley, Andy (5)
Chrzaszcz, Marcin (5)
Ohlsson, Tommy, 1973 ... (4)
Sander, H. G. (3)
Bai, X. (3)
Kowalski, M. (3)
Barwick, S. W. (3)
Hultqvist, Klas (3)
Cowen, D. F. (3)
Desiati, P. (3)
DeYoung, T. (3)
Goldschmidt, A. (3)
Halzen, F. (3)
Hanson, K. (3)
Hill, G. C. (3)
Karle, A. (3)
Madsen, J. (3)
Morse, R. (3)
Nygren, D. R. (3)
Price, P. B. (3)
Rawlins, K. (3)
Rhode, W. (3)
Schmidt, T. (3)
Spiczak, G. M. (3)
Spiering, C. (3)
Stokstad, R. G. (3)
Taboada, I. (3)
Wiebusch, C. H. (3)
Woschnagg, K. (3)
Yodh, G. (3)
Danninger, Matthias (3)
Scott, P. (3)
Seo, Seon Hee (3)
Fairbairn, M. (3)
Blennow, Mattias (3)
Akrami, Yashar, 1980 ... (3)
visa färre...
Lärosäte
Stockholms universitet (55)
Kungliga Tekniska Högskolan (8)
Uppsala universitet (5)
Linnéuniversitetet (1)
Språk
Engelska (61)
Odefinierat språk (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (54)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy