SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Engblom David) "

Sökning: WFRF:(Engblom David)

  • Resultat 41-50 av 157
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Demidova, Marina, et al. (författare)
  • ST-segment dynamics during reperfusion period and the size of myocardial injury in experimental myocardial infarction.
  • 2011
  • Ingår i: Journal of Electrocardiology. - : Elsevier BV. - 1532-8430 .- 0022-0736. ; 44:1, s. 74-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Exacerbation of ST elevation associated with reperfusion has been reported in patients with myocardial infarction. However, the cause of the "reperfusion peak" and relation of its magnitude to the size of myocardial damage has not been explored. The aim of our study was to assess the correlation between the ST-dynamics during reperfusion, the myocardium at risk (MaR), and the infarct size (IS).
  •  
42.
  •  
43.
  • Elander, Louise, et al. (författare)
  • Inducible Prostaglandin E-2 Synthesis Interacts in a Temporally Supplementary Sequence with Constitutive Prostaglandin-Synthesizing Enzymes in Creating the Hypothalamic-Pituitary-Adrenal Axis Response to Immune Challenge
  • 2009
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 29:5, s. 1404-1413
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis has been suggested to depend on prostaglandins, but the prostaglandin species and the prostaglandin-synthesizing enzymes that are responsible have not been fully identified. Here, we examined HPA axis activation in mice after genetic deletion or pharmacological inhibition of prostaglandin E-2-synthesizing enzymes, including cyclooxygenase-1 (Cox-1), Cox-2, and microsomal prostaglandin E synthase-1 (mPGES-1). After immune challenge by intraperitoneal injection of lipopolysaccharide, the rapid stress hormone responses were intact after Cox-2 inhibition and unaffected by mPGES-1 deletion, whereas unselective Cox inhibition blunted these responses, implying the involvement of Cox-1. However, mPGES-1-deficient mice showed attenuated transcriptional activation of corticotropin-releasing hormone (CRH) that was followed by attenuated plasma concentrations of adrenocorticotropic hormone and corticosterone. Cox-2 inhibition similarly blunted the delayed corticosterone response and further attenuated corticosterone release in mPGES-1 knock-out mice. The expression of the c-fos gene, an index of synaptic activation, was maintained in the paraventricular hypothalamic nucleus and its brainstem afferents both after unselective and Cox-2 selective inhibition as well as in Cox-1, Cox-2, and mPGES-1 knock-out mice. These findings point to a mechanism by which ( 1) neuronal afferent signaling via brainstem autonomic relay nuclei and downstream Cox-1-dependent prostaglandin release and ( 2) humoral, CRH transcription-dependent signaling through induced Cox-2 and mPGES-1 elicited PGE(2) synthesis, shown to occur in brain vascular cells, play distinct, but temporally supplementary roles for the stress hormone response to inflammation.
  •  
44.
  • Elander, Louise, 1980-, et al. (författare)
  • Prostaglandin E2 receptors in IL-1β induced anorexia
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Anorexia in response to immune challenge by Interleukin-1β (IL-1β) has been shown to be dependent on Prostaglandin E2 (PGE2) produced by the inducible enzyme microsomal prostaglandin E synthase-1 (mPGES-1). However, it is not known which of the four known PGE2 receptors EP1-4, encoded by the genes Ptger 1-4, that mediates the PGE2-induced anorexia. Here we examined food intake in mice deficient in EP1, EP2 and EP3, respectively, during normal conditions and following treatment with IL-1β. Neither of the gene deletions affected baseline food intake, and all the three genotypes displayed anorexia following IL-1β injection, similar to wild type mice. Previous work has demonstrated that the EP3 receptor is critical for the generation of fever, and that EP1 and EP3 receptors mediate inflammationinduced activation of the hypothalamic-pituitary-adrenal (HPA) axis. The present data, showing intact anorexigenic responses in EP1 and EP3 deficient mice, as well as in mice with deletion of the EP2 receptor, hence suggest that PGE2-elicited acute phase responses are mediated by distinct set or sets of PGE2-receptors.
  •  
45.
  • Engblom, David, 1975-, et al. (författare)
  • Activation of prostanoid EP3 and EP4 receptor mRNA-expressing neurons in the rat parabrachial nucleus by intravenous injection of bacterial wall lipopolysaccharide
  • 2001
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 440:4, s. 378-386
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic inflammation activates central autonomic circuits, such as neurons in the pontine parabrachial nucleus. This activation may be the result of afferent signaling through the vagus nerve, but it may also depend on central prostaglandin-mediated mechanisms. Recently, we have shown that neurons in the parts of the parabrachial nucleus that are activated by immune challenge express prostaglandin receptors of the EP3 and EP4 subtypes, but it remains to be determined if the prostaglandin receptor-expressing neurons are identical to those that respond to immune stimuli. In the present study, bacterial wall lipopolysaccharide was injected intravenously in adult male rats and the expression of c-fos mRNA and of EP3 and EP4 receptor mRNA was examined with complementary RNA probes labeled with digoxigenin and radioisotopes, respectively. Large numbers of neurons in the external lateral parabrachial subnucleus, a major target of vagal-solitary tract efferents, expressed c-fos mRNA. Quantitative analysis showed that about 60% (range 40%–79%) of these neurons also expressed EP3 receptor mRNA. Conversely, slightly more than 50% (range 48%–63%) of the EP3 receptor-expressing neurons in the same subnucleus coexpressed c-fos mRNA. In contrast, few EP4 receptor-expressing neurons were c-fos positive, with the exception of a small population located in the superior lateral and dorsal lateral subnuclei. These findings show that immune challenge activates central autonomic neurons that could be the target of centrally produced prostaglandin E2, suggesting that synaptic signaling and paracrine mechanisms may interact on these neurons. J. Comp. Neurol. 440:378–386, 2001. © 2001 Wiley-Liss, Inc.
  •  
46.
  • Engblom, David, et al. (författare)
  • Direct glucocorticoid receptor-Stat5 interaction in hepatocytes controls body size and maturation-related gene expression
  • 2007
  • Ingår i: Genes & Development. - : Csh Cold Spring Harbor Laboratory Press. - 0890-9369 .- 1549-5477. ; 21:10, s. 1157-1162
  • Tidskriftsartikel (refereegranskat)abstract
    • The glucocorticoid receptor regulates transcription through DNA binding as well as through cross-talk with other transcription factors. In hepatocytes, the glucocorticoid receptor is critical for normal postnatal growth. Using hepatocyte- specific and domain-selective mutations in the mouse we show that Stat5 in hepatocytes is essential for normal postnatal growth and that it mediates the growth- promoting effect of the glucocorticoid receptor through a direct interaction involving the N-terminal tetramerization domain of Stat5b. This interaction mediates a selective and unexpectedly extensive part of the transcriptional actions of these molecules since it controls the expression of gene sets involved in growth and sexual maturation.
  •  
47.
  • Engblom, David, et al. (författare)
  • Distribution of prostaglandin EP3 and EP4 receptor mRNA in the rat parabrachial nucleus
  • 2000
  • Ingår i: Neuroscience Letters. - : Elsevier Science B.V., Amsterdam.. - 0304-3940 .- 1872-7972. ; 281:2-3, s. 163-166
  • Tidskriftsartikel (refereegranskat)abstract
    • By using in situ hybridization, the distribution of mRNA for the PGE2 receptors EP3 and EP4 was examined in the rat parabrachial nucleus (PB), a major brain stem relay for autonomic and nociceptive processing. EP3 receptor mRNA was present in most subnuclei, with the densest labeling in the external lateral, dorsal lateral, superior lateral, central lateral and Kölliker–Fuse nuclei. EP4 receptor mRNA expressing cells had a more restricted distribution, largely being confined to the superior lateral and adjacent parts of the dorsal and central lateral nuclei in a pattern complementary to that for EP3 receptor mRNA. These findings suggest that EP3 and EP4 receptors in PB have distinct functional roles that include nociceptive processing, blood pressure regulation and feeding behavior.
  •  
48.
  • Engblom, David, 1975-, et al. (författare)
  • EP3 and EP4 receptor mRNA expression in peptidergic cell groups of the rat parabrachial nucleus
  • 2004
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522 .- 1873-7544. ; 126:4, s. 989-999
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examines the distribution of prostaglandin E2 receptors of subtype EP3 and EP4 among brain stem parabrachial neurons that were characterized with respect to their neuropeptide expression. By using a dual-labeling in situ hybridization method, we show that preprodynorphin mRNA expressing neurons in the dorsal and central lateral subnuclei express EP3 receptor mRNA. Such receptors are also expressed in preproenkephalin, calcitonin gene related peptide and preprotachykinin mRNA positive neurons in the external lateral subnucleus, whereas preprodynorphin mRNA expressing neurons in this subnucleus are EP receptor negative. In addition, EP3 receptor expression is seen among some enkephalinergic neurons in the Kölliker-Fuse nucleus. Neurons in the central part of the cholecystokininergic population in the regions of the superior lateral subnucleus express EP4 receptor mRNA, whereas those located more peripherally express EP3 receptors. Taken together with previous findings showing that discrete peptidergic cell groups mediate nociceptive and/or visceral afferent information to distinct brain stem and forebrain regions, the present results suggest that the processing of this information in the parabrachial nucleus is influenced by prostaglandin E2. Recent work has shown that prostaglandin E2 is released into the brain following peripheral immune challenge; hence, the parabrachial nucleus may be a region where humoral signaling of peripheral inflammatory events may interact with neuronal signaling elicited by the same peripheral processes.
  •  
49.
  • Engblom, David, et al. (författare)
  • Glutamate receptors on dopamine neurons control the persistence of cocaine seeking
  • 2008
  • Ingår i: Neuron. - : Elsevier Science B.V., Amsterdam.. - 0896-6273 .- 1097-4199. ; 59:3, s. 497-508
  • Tidskriftsartikel (refereegranskat)abstract
    • Cocaine strengthens excitatory synapses onto midbrain dopamine neurons through the synaptic delivery of GluR1-containing AMPA receptors. This cocaine-evoked plasticity depends on NMDA receptor activation, but its behavioral significance in the context of addiction remains elusive. Here, we generated mice lacking the GluR1, GluR2, or NR1 receptor subunits selectively in dopamine neurons. We report that in midbrain slices of cocaine-treated mice, synaptic transmission was no longer strengthened when GluR1 or NR1 was abolished, while in the respective mice the drug still induced normal conditioned place preference and locomotor sensitization. In contrast, extinction of drug-seeking behavior was absent in mice lacking GluR1, while in the NR1 mutant mice reinstatement was abolished. In conclusion, cocaine-evoked synaptic plasticity does not mediate concurrent short-term behavioral effects of the drug but may initiate adaptive changes eventually leading to the persistence of drug-seeking behavior.
  •  
50.
  • Engblom, David, 1975-, et al. (författare)
  • Induction of microsomal prostaglandin E synthase in the rat brain endothelium and parenchyma in adjuvant-induced arthritis
  • 2002
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 452:3, s. 205-214
  • Tidskriftsartikel (refereegranskat)abstract
    • Although central nervous symptoms such as hyperalgesia, fatigue, malaise, and anorexia constitute major problems in the treatment of patients suffering from chronic inflammatory disease, little has been known about the signaling mechanisms by which the brain is activated during such conditions. Here, in an animal model of rheumatoid arthritis, we show that microsomal prostaglandin E-synthase, the inducible terminal isomerase in the prostaglandin E2-synthesizing pathway, is expressed in endothelial cells along the blood-brain barrier and in the parenchyma of the paraventricular hypothalamic nucleus. The endothelial cells but not the paraventricular hypothalamic cells displayed a concomitant induction of cyclooxygenase-2 and expressed interleukin-1 type 1 receptors, which indicates that the induction is due to peripherally released cytokines. In contrast to cyclooxygenase-2, microsomal prostaglandin E synthase had very sparse constitutive expression, suggesting that it could be a target for developing drugs that will carry fewer side effects than the presently available cyclooxygenase inhibitors. These findings, thus, suggest that immune-to-brain communication during chronic inflammatory conditions involves prostaglandin E2-synthesis both along the blood-brain barrier and in the parenchyma of the hypothalamic paraventricular nucleus and point to novel avenues for the treatment of the brain-elicited disease symptoms during these conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 157
Typ av publikation
tidskriftsartikel (120)
doktorsavhandling (17)
konferensbidrag (14)
annan publikation (4)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (129)
övrigt vetenskapligt/konstnärligt (28)
Författare/redaktör
Engblom, David (57)
Engblom, Henrik (55)
Erlinge, David (48)
Arheden, Håkan (46)
Carlsson, Marcus (35)
Heiberg, Einar (26)
visa fler...
Blomqvist, Anders (22)
Atar, Dan (21)
Engblom, David, 1975 ... (21)
Nordlund, David (19)
Koul, Sasha (17)
Blomqvist, Anders, 1 ... (17)
Jablonowski, Robert (15)
Ugander, Martin (15)
Ekelund, Ulf (11)
vanderPals, Jesper (11)
Götberg, Matthias (10)
Kanski, Mikael (10)
Rodriguez Parkitna, ... (9)
Nilsson, Anna (8)
Schuetz, Guenther (8)
Olivecrona, Göran (8)
Eskilsson, Anna (8)
Ericsson-Dahlstrand, ... (8)
Borgquist, Rasmus (7)
Clemmensen, Peter (7)
Sörensson, Peder (7)
Engström, Linda (7)
Aletras, Anthony H (7)
Ruud, Johan (7)
Mirrasekhian, Elahe (7)
Schwaninger, Markus (7)
Halvorsen, Sigrun (6)
Khoshnood, Ardavan (6)
Strauss, David G (6)
Wilhelms, Daniel (6)
Ek, Monica (6)
Jakobsson, Per-Johan (6)
Shionoya, Kiseko, 19 ... (6)
Mackerlova, Ludmila (6)
Steding-Ehrenborg, K ... (5)
Pahlm, Ulrika (5)
Schelbert, Erik B. (5)
Sigfridsson, Andreas (5)
Ubachs, Joey (5)
Spanagel, Rainer (5)
Jaarola, Maarit (5)
Bilbao, Ainhoa (5)
Stojakovic, Andrea (5)
Metzler, Bernhard (5)
visa färre...
Lärosäte
Linköpings universitet (91)
Lunds universitet (59)
Karolinska Institutet (17)
Uppsala universitet (10)
Göteborgs universitet (7)
Kungliga Tekniska Högskolan (1)
visa fler...
Stockholms universitet (1)
Mälardalens universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (157)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (107)
Naturvetenskap (14)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy