SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fadista Joao) "

Sökning: WFRF:(Fadista Joao)

  • Resultat 31-40 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Sharoyko, Vladimir, et al. (författare)
  • Loss of TFB1M results in mitochondrial dysfunction that leads to impaired insulin secretion and diabetes.
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:21, s. 5733-5749
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously identified Transcription Factor B1 Mitochondrial (TFB1M) as a Type 2 Diabetes (T2D) risk gene, using human and mouse genetics. To further understand the function of TFB1M and how it is associated with T2D we created a β-cell specific knockout of Tfb1 m, which gradually developed diabetes. Prior to the onset of diabetes, β-Tfb1 m(-/-) mice exhibited retarded glucose clearance due to impaired insulin secretion. β-Tfb1 m(-/-) islets released less insulin in response to fuels, contained less insulin and secretory granules, and displayed reduced β-cell mass. Moreover, mitochondria in Tfb1 m-deficient β-cells were more abundant with disrupted architecture. TFB1M is known to control mitochondrial protein translation by adenine-dimethylation of 12S ribosomal RNA (rRNA). Here, we found that levels of TFB1M and mitochondrial encoded proteins, mitochondrial 12S rRNA methylation, ATP production and oxygen consumption were reduced in β-Tfb1 m(-/-) islets. Furthermore, levels of reactive oxygen species in response to cellular stress were increased while induction of defense mechanisms was attenuated. We also show increased apoptosis and necrosis as well as infiltration of macrophages and CD4(+)-cells in the islets. Taken together, our findings demonstrate that Tfb1 m-deficiency in β-cells caused mitochondrial dysfunction and subsequently diabetes due to combined loss of β-cell function and mass. These observations reflect pathogenetic processes in human islets: using RNA sequencing, we found that the TFB1M risk variant exhibited a negative gene-dosage effect on islet TFB1M mRNA levels, as well as insulin secretion. Our findings highlight the role of mitochondrial dysfunction in impairments of β-cell function and mass, the hallmarks of T2D.
  •  
32.
  • Skotte, Line, et al. (författare)
  • Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes
  • 2022
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 145:2, s. 555-568
  • Tidskriftsartikel (refereegranskat)abstract
    • Febrile seizures represent the most common type of pathological brain activity in young children and are influenced by genetic, environmental and developmental factors. In a minority of cases, febrile seizures precede later development of epilepsy. We conducted a genome-wide association study of febrile seizures in 7635 cases and 83 966 controls identifying and replicating seven new loci, all with P < 5 × 10-10. Variants at two loci were functionally related to altered expression of the fever response genes PTGER3 and IL10, and four other loci harboured genes (BSN, ERC2, GABRG2, HERC1) influencing neuronal excitability by regulating neurotransmitter release and binding, vesicular transport or membrane trafficking at the synapse. Four previously reported loci (SCN1A, SCN2A, ANO3 and 12q21.33) were all confirmed. Collectively, the seven novel and four previously reported loci explained 2.8% of the variance in liability to febrile seizures, and the single nucleotide polymorphism heritability based on all common autosomal single nucleotide polymorphisms was 10.8%. GABRG2, SCN1A and SCN2A are well-established epilepsy genes and, overall, we found positive genetic correlations with epilepsies (rg = 0.39, P = 1.68 × 10-4). Further, we found that higher polygenic risk scores for febrile seizures were associated with epilepsy and with history of hospital admission for febrile seizures. Finally, we found that polygenic risk of febrile seizures was lower in febrile seizure patients with neuropsychiatric disease compared to febrile seizure patients in a general population sample. In conclusion, this largest genetic investigation of febrile seizures to date implicates central fever response genes as well as genes affecting neuronal excitability, including several known epilepsy genes. Further functional and genetic studies based on these findings will provide important insights into the complex pathophysiological processes of seizures with and without fever.
  •  
33.
  • Soleimanpour, Scott A, et al. (författare)
  • The diabetes susceptibility gene clec16a regulates mitophagy.
  • 2014
  • Ingår i: Cell. - : Elsevier BV. - 1097-4172 .- 0092-8674. ; 157:7, s. 1577-1590
  • Tidskriftsartikel (refereegranskat)abstract
    • Clec16a has been identified as a disease susceptibility gene for type 1 diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. Here we report that Clec16a is a membrane-associated endosomal protein that interacts with E3 ubiquitin ligase Nrdp1. Loss of Clec16a leads to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a have abnormal mitochondria with reduced oxygen consumption and ATP concentration, both of which are required for normal β cell function. Indeed, pancreatic Clec16a is required for normal glucose-stimulated insulin release. Moreover, patients harboring a diabetogenic SNP in the Clec16a gene have reduced islet Clec16a expression and reduced insulin secretion. Thus, Clec16a controls β cell function and prevents diabetes by controlling mitophagy. This pathway could be targeted for prevention and control of diabetes and may extend to the pathogenesis of other Clec16a- and Parkin-associated diseases.
  •  
34.
  • Steinthorsdottir, V, et al. (författare)
  • Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 5976-
  • Tidskriftsartikel (refereegranskat)abstract
    • Preeclampsia is a serious complication of pregnancy, affecting both maternal and fetal health. In genome-wide association meta-analysis of European and Central Asian mothers, we identify sequence variants that associate with preeclampsia in the maternal genome at ZNF831/20q13 and FTO/16q12. These are previously established variants for blood pressure (BP) and the FTO variant has also been associated with body mass index (BMI). Further analysis of BP variants establishes that variants at MECOM/3q26, FGF5/4q21 and SH2B3/12q24 also associate with preeclampsia through the maternal genome. We further show that a polygenic risk score for hypertension associates with preeclampsia. However, comparison with gestational hypertension indicates that additional factors modify the risk of preeclampsia.
  •  
35.
  • Ström, Kristoffer, et al. (författare)
  • Genetic variation at RAB3GAP2 and its role in exercise-related adaptation and recovery
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Skeletal muscle fiber composition and capillary density influence physical performance and whole-body metabolic properties. ~45% of the variance in fiber type is heritable, which motivated us to perform a genome-wide association study of skeletal muscle histology from 656 Swedish men. Four independent variants were associated (p
  •  
36.
  • 't Hart, Leen M., et al. (författare)
  • The CTRB1/2 Locus Affects Diabetes Susceptibility and Treatment via the Incretin Pathway
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:9, s. 3275-3281
  • Tidskriftsartikel (refereegranskat)abstract
    • The incretin hormone glucagon-like peptide 1 (GLP-1) promotes glucose homeostasis and enhances -cell function. GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors, which inhibit the physiological inactivation of endogenous GLP-1, are used for the treatment of type 2 diabetes. Using the Metabochip, we identified three novel genetic loci with large effects (30-40%) on GLP-1-stimulated insulin secretion during hyperglycemic clamps in nondiabetic Caucasian individuals (TMEM114; CHST3 and CTRB1/2; n = 232; all P 8.8 x 10(-7)). rs7202877 near CTRB1/2, a known diabetes risk locus, also associated with an absolute 0.51 +/- 0.16% (5.6 +/- 1.7 mmol/mol) lower A1C response to DPP-4 inhibitor treatment in G-allele carriers, but there was no effect on GLP-1 RA treatment in type 2 diabetic patients (n = 527). Furthermore, in pancreatic tissue, we show that rs7202877 acts as expression quantitative trait locus for CTRB1 and CTRB2, encoding chymotrypsinogen, and increases fecal chymotrypsin activity in healthy carriers. Chymotrypsin is one of the most abundant digestive enzymes in the gut where it cleaves food proteins into smaller peptide fragments. Our data identify chymotrypsin in the regulation of the incretin pathway, development of diabetes, and response to DPP-4 inhibitor treatment.
  •  
37.
  • Taneera, Jalal, et al. (författare)
  • A Systems Genetics Approach Identifies Genes and Pathways for Type 2 Diabetes in Human Islets
  • 2012
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 16:1, s. 122-134
  • Tidskriftsartikel (refereegranskat)abstract
    • Close to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability. In an attempt to identify additional T2D genes, we analyzed global gene expression in human islets from 63 donors. Using 48 genes located near T2D risk variants, we identified gene coexpression and protein-protein interaction networks that were strongly associated with islet insulin secretion and HbA(1c). We integrated our data to form a rank list of putative T2D genes, of which CHL1, LRFN2, RASGRP1, and PPM1K were validated in INS-1 cells to influence insulin secretion, whereas GPR120 affected apoptosis in islets. Expression variation of the top 20 genes explained 24% of the variance in HbA(1c) with no claim of the direction. The data present a global map of genes associated with islet dysfunction and demonstrate the value of systems genetics for the identification of genes potentially involved in T2D.
  •  
38.
  • Taneera, Jalal, et al. (författare)
  • Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes.
  • 2013
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 1872-8057 .- 0303-7207. ; 375:1-2, s. 35-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Microarray gene expression data were used to analyze the expression pattern of cyclin, cyclin-dependent kinase (CDKs) and cyclin-dependent kinase inhibitor (CDKIs) genes from human pancreatic islets with and without type 2 diabetes (T2D). Of the cyclin genes, CCNI was the most expressed. Data obtained from microarray and qRT-PCR showed higher expression of CCND1 in diabetic islets. Among the CDKs, CDK4, CDK8 and CDK9 were highly expressed, while CDK1 was expressed at low level. High expression of CDK18 was observed in diabetic islets. Of the CDKIs, CDKN1A expression was higher in diabetic islets in both microarray and qRT-PCR. Expression of CDKN1A, CDKN2A, CCNI2, CDK3 and CDK16 was correlated with age. Finally, eight SNPs in these genes were associated with T2D in the DIAGRAM database. Our data provide a comprehensive expression pattern of cell cycle genes in human islets. More human studies are required to confirm and reproduce animal studies.
  •  
39.
  • Taneera, Jalal, et al. (författare)
  • GNAS gene is an important regulator of insulin secretory capacity in pancreatic β-cells
  • 2019
  • Ingår i: Gene. - : Elsevier BV. - 1879-0038 .- 0378-1119. ; 715
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Type 2 diabetes (T2D) is a complex polygenic disease with unclear mechanism. In an attempt to identify novel genes involved in β-cell function, we harness a bioinformatics method called Loss-of-function tool (LoFtool) gene score. METHODS: RNA-sequencing data from human islets were used to cross-reference genes within the 1st quartile of most intolerant LoFtool score with the 100th most expressed genes in human islets. Out of these genes, GNAS and EEF1A1 genes were selected for further investigation in diabetic islets, metabolic tissues along with their correlation with diabetic phenotypes. The influence of GNAS and EEF1A1 on insulin secretion and β-cell function were validated in INS-1 cells. RESULTS: A comparatively higher expression level of GNAS and EEF1A1 was observed in human islets than fat, liver and muscle tissues. Furthermore, diabetic islets displayed a reduced expression of GNAS, but not of EEF1A, compared to non-diabetic islets. The expression of GNAS was positively correlated with insulin secretory index, GLP1R, GIPR and inversely correlated with HbA1c. Diabetic human islets displayed a reduced cAMP generation and insulin secretory capacity in response to glucose. Moreover, siRNA silencing of GNAS in INS-1 cells reduced insulin secretion, insulin content, and cAMP production. In addition, the expression of Insulin, PDX1, and MAFA was significantly down-regulated in GNAS-silenced cells. However, cell viability and apoptosis rate were unaffected. CONCLUSION: LoFtool is a powerful tool to identify genes associated with pancreatic islets dysfunction. GNAS is a crucial gene for the β-cell insulin secretory capacity.
  •  
40.
  • Taneera, Jalal, et al. (författare)
  • Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia.
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 24:7, s. 1945-1955
  • Tidskriftsartikel (refereegranskat)abstract
    • Normal glucose homeostasis is characterized by appropriate insulin secretion and low HbA1c. Gene expression signatures associated with these two phenotypes could be essential for islet function and patho-physiology of type 2 diabetes (T2D). Herein, we employed a novel approach to identify candidate genes involved in T2D by correlating islet microarray gene expression data (78 donors) with insulin secretion and HbA1c level. Expression of 649 genes (p<0.05) was correlated with insulin secretion and HbA1c. Of them, 5 genes (GLR1A, PPP1R1A, PLCDXD3, FAM105A and ENO2) correlated positively with insulin secretion/negatively with HbA1c and one gene (GNG5) correlated negatively with insulin secretion/positively with HbA1c were followed up. The 5 positively correlated genes have lower expression levels in diabetic islets, whereas, GNG5 expression is higher. Exposure of human islets to high glucose for 24 hrs resulted in up-regulation of GNG5 and PPP1R1A expression, while expression of ENO2 and GLRA1 was down-regulated. No effect was seen on the expression of FAM105A and PLCXD3. siRNA silencing in INS-1 832/13 cells showed reduction in insulin secretion for PPP1R1A, PLXCD3, ENO2, FAM105A and GNG5 but not GLRA1. Although, no SNP in these gene loci passed the genome-wide significance for association with T2D in DIAGRAM+ database, four SNPs influenced gene expression in cis in human islets. In conclusion, we identified and confirmed PPP1R1A, FAM105A, ENO2, PLCDX3 and GNG5 as potential regulators of islet function. We provide a list of candidate genes as a resource for exploring their role in the pathogenesis of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 44
Typ av publikation
tidskriftsartikel (42)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (43)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Fadista, Joao (44)
Groop, Leif (30)
Hansson, Ola (12)
McCarthy, Mark I (11)
Lyssenko, Valeriya (9)
Ahlqvist, Emma (9)
visa fler...
Mahajan, Anubha (9)
Tuomi, Tiinamaija (8)
Melbye, Mads (8)
Ladenvall, Claes (8)
Wierup, Nils (7)
Renström, Erik (6)
Lind, Lars (6)
Wareham, Nicholas J. (6)
Taneera, Jalal (6)
Almgren, Peter (6)
Kuusisto, Johanna (6)
Laakso, Markku (6)
Storm, Petter (6)
Vikman, Petter (6)
Pedersen, Oluf (6)
Hansen, Torben (6)
Langenberg, Claudia (6)
Boehnke, Michael (6)
Mohlke, Karen L (6)
Tuomilehto, Jaakko (6)
Froguel, Philippe (6)
Nilsson, Peter (5)
Bennet, Hedvig (5)
Fex, Malin (5)
Salomaa, Veikko (5)
Deloukas, Panos (5)
Stancáková, Alena (5)
Isomaa, Bo (5)
Rosengren, Anders (5)
Linneberg, Allan (5)
Grarup, Niels (5)
Gieger, Christian (5)
Barroso, Ines (5)
Hattersley, Andrew T (5)
Krus, Ulrika (5)
Ottosson Laakso, Emi ... (5)
Gloyn, Anna L (5)
Metspalu, Andres (5)
Palmer, Colin N. A. (5)
Altshuler, David (5)
Thorand, Barbara (5)
Loos, Ruth J F (5)
Zeggini, Eleftheria (5)
Dupuis, Josée (5)
visa färre...
Lärosäte
Lunds universitet (43)
Uppsala universitet (13)
Karolinska Institutet (10)
Umeå universitet (5)
Göteborgs universitet (3)
Mittuniversitetet (2)
visa fler...
Stockholms universitet (1)
Örebro universitet (1)
visa färre...
Språk
Engelska (44)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (44)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy