SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fischer Krista) "

Sökning: WFRF:(Fischer Krista)

  • Resultat 11-20 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Hägg, Sara, et al. (författare)
  • Adiposity as a cause of cardiovascular disease : a Mendelian randomization study
  • 2015
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 44:2, s. 578-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adiposity, as indicated by body mass index (BMI), has been associated with risk of cardiovascular diseases in epidemiological studies. We aimed to investigate if these associations are causal, using Mendelian randomization (MR) methods. Methods: The associations of BMI with cardiovascular outcomes [coronary heart disease (CHD), heart failure and ischaemic stroke], and associations of a genetic score (32 BMI single nucleotide polymorphisms) with BMI and cardiovascular outcomes were examined in up to 22 193 individuals with 3062 incident cardiovascular events from nine prospective follow-up studies within the ENGAGE consortium. We used random-effects meta-analysis in an MR framework to provide causal estimates of the effect of adiposity on cardiovascular outcomes. Results: There was a strong association between BMI and incident CHD (HR = 1.20 per SD-increase of BMI, 95% CI, 1.12-1.28, P = 1.9.10(-7)), heart failure (HR = 1.47, 95% CI, 1.35-1.60, P = 9.10(-19)) and ischaemic stroke (HR = 1.15, 95% CI, 1.06-1.24, P = 0.0008) in observational analyses. The genetic score was robustly associated with BMI (beta = 0.030 SD-increase of BMI per additional allele, 95% CI, 0.028-0.033, P = 3.10(-107)). Analyses indicated a causal effect of adiposity on development of heart failure (HR = 1.93 per SD-increase of BMI, 95% CI, 1.12-3.30, P = 0.017) and ischaemic stroke (HR = 1.83, 95% CI, 1.05-3.20, P = 0.034). Additional cross-sectional analyses using both ENGAGE and CARDIoGRAMplusC4D data showed a causal effect of adiposity on CHD. Conclusions: Using MR methods, we provide support for the hypothesis that adiposity causes CHD, heart failure and, previously not demonstrated, ischaemic stroke.
  •  
12.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
13.
  • Mahajan, Anubha, et al. (författare)
  • Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps
  • 2018
  • Ingår i: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 50:11, s. 1505-
  • Tidskriftsartikel (refereegranskat)abstract
    • We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci,135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%,14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).
  •  
14.
  • Mahajan, Anubha, et al. (författare)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
15.
  • Mahajan, Anubha, et al. (författare)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Tidskriftsartikel (refereegranskat)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
16.
  • Marioni, Riccardo E, et al. (författare)
  • Genetic variants linked to education predict longevity.
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 113:47, s. 13366-13371
  • Tidskriftsartikel (refereegranskat)abstract
    • Educational attainment is associated with many health outcomes, including longevity. It is also known to be substantially heritable. Here, we used data from three large genetic epidemiology cohort studies (Generation Scotland, n = ∼17,000; UK Biobank, n = ∼115,000; and the Estonian Biobank, n = ∼6,000) to test whether education-linked genetic variants can predict lifespan length. We did so by using cohort members' polygenic profile score for education to predict their parents' longevity. Across the three cohorts, meta-analysis showed that a 1 SD higher polygenic education score was associated with ∼2.7% lower mortality risk for both mothers (total ndeaths = 79,702) and ∼2.4% lower risk for fathers (total ndeaths = 97,630). On average, the parents of offspring in the upper third of the polygenic score distribution lived 0.55 y longer compared with those of offspring in the lower third. Overall, these results indicate that the genetic contributions to educational attainment are useful in the prediction of human longevity.
  •  
17.
  • McQuillan, Ruth, et al. (författare)
  • Evidence of Inbreeding Depression on Human Height
  • 2012
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:7, s. e1002655-
  • Tidskriftsartikel (refereegranskat)abstract
    • Stature is a classical and highly heritable complex trait, with 80%–90% of variation explained by genetic factors. In recent years, genome-wide association studies (GWAS) have successfully identified many common additive variants influencing human height; however, little attention has been given to the potential role of recessive genetic effects. Here, we investigated genome-wide recessive effects by an analysis of inbreeding depression on adult height in over 35,000 people from 21 different population samples. We found a highly significant inverse association between height and genome-wide homozygosity, equivalent to a height reduction of up to 3 cm in the offspring of first cousins compared with the offspring of unrelated individuals, an effect which remained after controlling for the effects of socio-economic status, an important confounder (χ2 = 83.89, df = 1; p = 5.2×10−20). There was, however, a high degree of heterogeneity among populations: whereas the direction of the effect was consistent across most population samples, the effect size differed significantly among populations. It is likely that this reflects true biological heterogeneity: whether or not an effect can be observed will depend on both the variance in homozygosity in the population and the chance inheritance of individual recessive genotypes. These results predict that multiple, rare, recessive variants influence human height. Although this exploratory work focuses on height alone, the methodology developed is generally applicable to heritable quantitative traits (QT), paving the way for an investigation into inbreeding effects, and therefore genetic architecture, on a range of QT of biomedical importance.
  •  
18.
  • Parmar, Priyanka, et al. (författare)
  • Association of maternal prenatal smoking GFI1-locus and cardiometabolic phenotypes in 18,212 adults
  • 2018
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 38, s. 206-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health. Methods: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n= 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP). Findings: Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P < 0.012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 x 10(-7) < P < 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 x 10(-8) < P < 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels. Interpretation: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. Fund: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH.
  •  
19.
  • Ried, Janina S., et al. (författare)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
  •  
20.
  • Schumann, Gunter, et al. (författare)
  • KLB is associated with alcohol drinking, and its gene product beta-Klotho is necessary for FGF21 regulation of alcohol preference
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:50, s. 14372-14377
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive alcohol consumption is a major public health problem worldwide. Although drinking habits are known to be inherited, few genes have been identified that are robustly linked to alcohol drinking. We conducted a genome-wide association metaanalysis and replication study among >105,000 individuals of European ancestry and identified beta-Klotho (KLB) as a locus associated with alcohol consumption (rs11940694; P = 9.2 x 10(-12)). beta-Klotho is an obligate coreceptor for the hormone FGF21, which is secreted from the liver and implicated in macronutrient preference in humans. We show that brain-specific beta-Klotho KO mice have an increased alcohol preference and that FGF21 inhibits alcohol drinking by acting on the brain. These data suggest that a liver-brain endocrine axis may play an important role in the regulation of alcohol drinking behavior and provide a unique pharmacologic target for reducing alcohol consumption.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 27
Typ av publikation
tidskriftsartikel (26)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (27)
Författare/redaktör
Metspalu, Andres (21)
Gieger, Christian (18)
Hofman, Albert (17)
Salomaa, Veikko (16)
McCarthy, Mark I (16)
Peters, Annette (16)
visa fler...
Uitterlinden, André ... (15)
Thorsteinsdottir, Un ... (14)
van Duijn, Cornelia ... (13)
Stefansson, Kari (13)
Mangino, Massimo (13)
Spector, Tim D. (13)
Franco, Oscar H. (13)
Groop, Leif (12)
Perola, Markus (12)
Wareham, Nicholas J. (12)
Tuomilehto, Jaakko (12)
Jarvelin, Marjo-Riit ... (12)
Hayward, Caroline (12)
Gudnason, Vilmundur (12)
Ferrières, Jean (12)
Lind, Lars (11)
Langenberg, Claudia (11)
Thorleifsson, Gudmar (11)
Boomsma, Dorret I. (11)
Wilson, James F. (11)
Loos, Ruth J F (11)
Deloukas, Panos (10)
Laakso, Markku (10)
Chasman, Daniel I. (10)
Boehnke, Michael (10)
Mohlke, Karen L (10)
Martin, Nicholas G. (10)
Luan, Jian'an (10)
Morris, Andrew D (10)
Campbell, Harry (9)
Rudan, Igor (9)
Strachan, David P (9)
Kuusisto, Johanna (9)
Ridker, Paul M. (9)
Pedersen, Nancy L (9)
Willemsen, Gonneke (9)
Froguel, Philippe (9)
Palmer, Colin N. A. (9)
Kuulasmaa, Kari (9)
Hicks, Andrew A. (9)
Pramstaller, Peter P ... (9)
Montgomery, Grant W. (9)
Rivadeneira, Fernand ... (9)
Elliott, Paul (9)
visa färre...
Lärosäte
Uppsala universitet (20)
Lunds universitet (16)
Karolinska Institutet (13)
Göteborgs universitet (8)
Umeå universitet (8)
Högskolan Dalarna (3)
visa fler...
Luleå tekniska universitet (2)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (24)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy