SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Florez Jose C) "

Sökning: WFRF:(Florez Jose C)

  • Resultat 51-60 av 87
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Sullivan, Shannon D., et al. (författare)
  • Genetic Risk of Progression to Type 2 Diabetes and Response to Intensive Lifestyle or Metformin in Prediabetic Women With and Without a History of Gestational Diabetes Mellitus
  • 2014
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 37:4, s. 909-911
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE The Diabetes Prevention Program (DPP) trial investigated rates of progression to diabetes among adults with prediabetes randomized to treatment with placebo, metformin, or intensive lifestyle intervention. Among women in the DPP, diabetes risk reduction with metformin was greater in women with prior gestational diabetes mellitus (GDM) compared with women without GDM but with one or more previous live births. RESEARCH DESIGN AND METHODS We asked if genetic variability could account for these differences by comparing beta-cell function and genetic risk scores (GRS), calculated from 34 diabetes-associated loci, between women with and without histories of GDM. RESULTS beta-Cell function was reduced in women with GDM. The GRS was positively associated with a history of GDM; however, the GRS did not predict progression to diabetes or modulate response to intervention. CONCLUSIONS These data suggest that a diabetes-associated GRS is associated with development of GDM and may characterize women at risk for development of diabetes due to beta-cell dysfunction.
  •  
52.
  • Varga, Tibor V., et al. (författare)
  • Comprehensive Analysis of Established Dyslipidemia-Associated Loci in the Diabetes Prevention Program
  • 2016
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 1942-325X .- 1942-3268. ; 9:6, s. 495-503
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We assessed whether 234 established dyslipidemia-associated loci modify the effects of metformin treatment and lifestyle intervention (versus placebo control) on lipid and lipid subfraction levels in the Diabetes Prevention Program randomized controlled trial. Methods and Results: We tested gene treatment interactions in relation to baseline-adjusted follow-up blood lipid concentrations (high-density lipoprotein [HDL] and low-density lipoprotein-cholesterol, total cholesterol, and triglycerides) and lipoprotein subfraction particle concentrations and size in 2993 participants with pre-diabetes. Of the previously reported single-nucleotide polymorphism associations, 32.5% replicated at P<0.05 with baseline lipid traits. Trait-specific genetic risk scores were robustly associated (3x10(-4)>P>1.1x10(-16)) with their respective baseline traits for all but 2 traits. Lifestyle modified the effect of the genetic risk score for large HDL particle numbers, such that each risk allele of the genetic risk scores was associated with lower concentrations of large HDL particles at follow-up in the lifestyle arm (beta=-0.11 mu mol/L per genetic risk scores risk allele; 95% confidence interval, -0.188 to -0.033; P=5x10(-3); P-interaction=1x10(-3) for lifestyle versus placebo), but not in the metformin or placebo arms (P>0.05). In the lifestyle arm, participants with high genetic risk had more favorable or similar trait levels at 1-year compared with participants at lower genetic risk at baseline for 17 of the 20 traits. Conclusions: Improvements in large HDL particle concentrations conferred by lifestyle may be diminished by genetic factors. Lifestyle intervention, however, was successful in offsetting unfavorable genetic loading for most lipid traits.
  •  
53.
  • Vimaleswaran, Karani S, et al. (författare)
  • Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study.
  • 2014
  • Ingår i: The lancet. Diabetes & endocrinology. - 2213-8595 .- 2213-8587. ; 2:9, s. 719-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. Methods In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. Findings In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, −0·12 mm Hg, 95% CI −0·20 to −0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97–0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, −0·02 mm Hg, −0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of −0·10 mm Hg in systolic blood pressure (−0·21 to −0·0001; p=0·0498) and a change of −0·08 mm Hg in diastolic blood pressure (−0·15 to −0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96–0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of −0·29 mm Hg in diastolic blood pressure (−0·52 to −0·07; p=0·01), a change of −0·37 mm Hg in systolic blood pressure (−0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87–0·97; p=0·002). Interpretation Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study.
  •  
54.
  • Broadaway, K Alaine, et al. (författare)
  • Loci for insulin processing and secretion provide insight into type 2 diabetes risk.
  • 2023
  • Ingår i: American Journal of Human Genetics. - : Elsevier. - 0002-9297 .- 1537-6605. ; 110:2, s. 284-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.
  •  
55.
  • Chung, Wendy K., et al. (författare)
  • Precision medicine in diabetes : a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
  • 2020
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 63:9, s. 1671-1693
  • Tidskriftsartikel (refereegranskat)abstract
    • The convergence of advances in medical science, human biology, data science and technology has enabled the generation of new insights into the phenotype known as ‘diabetes’. Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment) and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e. monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realise its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
  •  
56.
  • Chung, Wendy K., et al. (författare)
  • Precision Medicine in Diabetes : A Consensus Report From the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 43:7, s. 1617-1635
  • Forskningsöversikt (refereegranskat)abstract
    • The convergence of advances in medical science, human biology, data science, and technology has enabled the generation of new insights into the phenotype known as "diabetes." Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence, and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field, and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment), and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e., monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realize its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
  •  
57.
  • Dastani, Zari, et al. (författare)
  • Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals
  • 2012
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 8:3, s. e1002607-
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P=4.5 x 10(-8)-1.2 x 10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3 x 10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p=4.3 x 10(-3), n = 22,044), increased triglycerides (p=2.6 x 10(-14), n = 93,440), increased waist-to-hip ratio (p=1.8 x 10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p=4.4 x 10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p=4.5x10(-13), n = 96,748) and decreased BMI (p= 1.4 x 10(-14), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
  •  
58.
  • Delahanty, Linda M, et al. (författare)
  • Effects of Weight Loss, Weight Cycling, and Weight Loss Maintenance on Diabetes Incidence and Change in Cardiometabolic Traits in the Diabetes Prevention Program.
  • 2014
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 37:10, s. 2738-2745
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examined specific measures of weight loss in relation to incident diabetes and improvement in cardiometabolic risk factors.RESEARCH DESIGN AND METHODS: This prospective, observational study analyzed nine weight measures, characterizing baseline weight, short- versus long-term weight loss, short- versus long-term weight regain, and weight cycling, within the Diabetes Prevention Program (DPP) lifestyle intervention arm (n = 1,000) for predictors of incident diabetes and improvement in cardiometabolic risk factors over 2 years.RESULTS: Although weight loss in the first 6 months was protective of diabetes (hazard ratio [HR] 0.94 per kg, 95% CI 0.90, 0.98; P < 0.01) and cardiometabolic risk factors (P < 0.01), weight loss from 0 to 2 years was the strongest predictor of reduced diabetes incidence (HR 0.90 per kg, 95% CI 0.87, 0.93; P < 0.01) and cardiometabolic risk factor improvement (e.g., fasting glucose: β = -0.57 mg/dL per kg, 95% CI -0.66, -0.48; P < 0.01). Weight cycling (defined as number of 5-lb [2.25-kg] weight cycles) ranged 0-6 times per participant and was positively associated with incident diabetes (HR 1.33, 95% CI 1.12, 1.58; P < 0.01), fasting glucose (β = 0.91 mg/dL per cycle; P = 0.02), HOMA-IR (β = 0.25 units per cycle; P = 0.04), and systolic blood pressure (β = 0.94 mmHg per cycle; P = 0.01). After adjustment for baseline weight, the effect of weight cycling remained statistically significant for diabetes risk (HR 1.22, 95% CI 1.02, 1.47; P = 0.03) but not for cardiometabolic traits.CONCLUSIONS: Two-year weight loss was the strongest predictor of reduced diabetes risk and improvements in cardiometabolic traits.
  •  
59.
  • Dimas, Antigone S, et al. (författare)
  • Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity.
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 63:6, s. 2158-2171
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with established type 2 diabetes display both beta-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci and indices of proinsulin processing, insulin secretion and insulin sensitivity. We included data from up to 58,614 non-diabetic subjects with basal measures, and 17,327 with dynamic measures. We employed additive genetic models with adjustment for sex, age and BMI, followed by fixed-effects inverse variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (including TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without detectable change in fasting glucose. The final group contained twenty risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.
  •  
60.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 87
Typ av publikation
tidskriftsartikel (79)
forskningsöversikt (5)
konferensbidrag (2)
Typ av innehåll
refereegranskat (85)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Florez, Jose C. (83)
Groop, Leif (33)
Franks, Paul W. (33)
McCarthy, Mark I (33)
Meigs, James B. (32)
Wareham, Nicholas J. (30)
visa fler...
Langenberg, Claudia (30)
Boehnke, Michael (29)
Dupuis, Josée (29)
Tuomilehto, Jaakko (28)
Laakso, Markku (26)
Mohlke, Karen L (25)
Jablonski, Kathleen ... (25)
Tuomi, Tiinamaija (24)
Kuusisto, Johanna (24)
Hansen, Torben (24)
Lind, Lars (23)
Altshuler, David (23)
Jackson, Anne U. (23)
Barroso, Ines (22)
Loos, Ruth J F (22)
Collins, Francis S. (22)
Morris, Andrew P. (22)
Grarup, Niels (21)
Pedersen, Oluf (21)
Knowler, William C. (20)
Prokopenko, Inga (20)
Frayling, Timothy M (20)
Lindgren, Cecilia M. (20)
Lyssenko, Valeriya (19)
Stringham, Heather M (19)
Scott, Robert A (18)
Hattersley, Andrew T (18)
Froguel, Philippe (18)
Franks, Paul (17)
Mahajan, Anubha (17)
Walker, Mark (17)
Luan, Jian'an (17)
Palmer, Colin N. A. (17)
Grallert, Harald (17)
Salomaa, Veikko (16)
Isomaa, Bo (16)
Hu, Frank B. (16)
Ingelsson, Erik (16)
Kovacs, Peter (16)
Morris, Andrew D (16)
Zeggini, Eleftheria (16)
Pankow, James S. (16)
Stumvoll, Michael (16)
Bergman, Richard N (16)
visa färre...
Lärosäte
Lunds universitet (73)
Umeå universitet (34)
Uppsala universitet (30)
Karolinska Institutet (20)
Göteborgs universitet (6)
Stockholms universitet (3)
visa fler...
Sveriges Lantbruksuniversitet (2)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (87)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (81)
Naturvetenskap (8)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy