SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Froguel Philippe) "

Sökning: WFRF:(Froguel Philippe)

  • Resultat 51-60 av 80
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Nookaew, Intawat, 1977, et al. (författare)
  • Adipose Tissue Resting Energy Expenditure and Expression of Genes Involved in Mitochondrial Function Are Higher in Women than in Men.
  • 2013
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 98:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Context:Men and women differ in body fat distribution and adipose tissue metabolism as well as in obesity comorbidities and their response to obesity treatment.Objective:The objective of the study was a search for sex differences in adipose tissue function.Design and Setting:This was an exploratory study performed at a university hospital.Participants and Main Outcome Measures:Resting metabolic rate (RMR), body composition, and sc adipose tissue genome-wide expression were measured in the SOS Sib Pair study (n = 732).Results:The relative contribution of fat mass to RMR and the metabolic rate per kilogram adipose tissue was higher in women than in men (P value for sex by fat mass interaction = .0019). Women had increased expression of genes involved in mitochondrial function, here referred to as a mitochondrial gene signature. Analysis of liver, muscle, and blood showed that the pronounced mitochondrial gene signature in women was specific for adipose tissue. Brown adipocytes are dense in mitochondria, and the expression of the brown adipocyte marker uncoupling protein 1 was 5-fold higher in women compared with men in the SOS Sib Pair Study (P = 7.43 × 10(-7)), and this was confirmed in a cross-sectional, population-based study (n = 83, 6-fold higher in women, P = .00256).Conclusions:The increased expression of the brown adipocyte marker uncoupling protein 1 in women indicates that the higher relative contribution of the fat mass to RMR in women is in part explained by an increased number of brown adipocytes.
  •  
52.
  • Olsson, Maja, 1975, et al. (författare)
  • Expression of the selenoprotein S (SELS) gene in subcutaneous adipose tissue and SELS genotype are associated with metabolic risk factors.
  • 2011
  • Ingår i: Metabolism: clinical and experimental. - : Elsevier BV. - 1532-8600. ; 60:1, s. 114-20
  • Tidskriftsartikel (refereegranskat)abstract
    • The selenoprotein S (SELS) is a putative receptor for serum amyloid A, and recent studies have suggested that SELS may be a link between type 2 diabetes mellitus and inflammation. Genetic studies of SELS polymorphisms have revealed associations with circulating levels of inflammatory markers and hard end points of cardiovascular disease. In this study, we analyzed SELS expression in subcutaneous adipose tissue and SELS genotype in relation to metabolic risk factors. DNA microarray expression analysis was used to study the expression of SELS in lean and obese siblings from the Swedish Obese Subjects Sib Pair Study. TaqMan genotyping was used to analyze 3 polymorphisms, previously found to be associated with circulating levels of inflammatory markers, in the INTERGENE case-control study of myocardial infarction and unstable angina pectoris. Possible associations between SELS genotype and/or expression with anthropometry and measures of metabolic status were investigated. Real-time polymerase chain reaction was used to analyze the SELS expression in isolated human adipocytes incubated with insulin. In lean subjects, we found correlations between SELS gene expression in subcutaneous adipose tissue and measures of obesity (waist, P = .045; sagittal diameter, P = .031) and blood pressure (diastolic, P = .016; systolic P = .015); and in obese subjects, we found correlations with measures of obesity (body mass index, P = .03; sagittal diameter, P = .008) and glycemic control (homeostasis model assessment of insulin resistance, P = .011; insulin, P = .009) after adjusting for age and sex. The 5227GG genotype was associated with serum levels of insulin (P = .006) and homeostasis model assessment of insulin resistance (P = .007). The expression of SELS increased after insulin stimulation in isolated human adipocytes (P = .008). In this study, we found an association between both SELS gene expression in adipose tissue and SELS genotype with measures of glycemic control. In vitro studies demonstrated that the SELS gene is regulated by insulin in human subcutaneous adipocytes. This study further supports a role for SELS in the development of metabolic disease, especially in the context of insulin resistance.
  •  
53.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
54.
  • Parmar, Priyanka, et al. (författare)
  • Association of maternal prenatal smoking GFI1-locus and cardiometabolic phenotypes in 18,212 adults
  • 2018
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 38, s. 206-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health. Methods: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n= 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP). Findings: Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P < 0.012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 x 10(-7) < P < 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 x 10(-8) < P < 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels. Interpretation: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. Fund: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH.
  •  
55.
  • Pattaro, Cristian, et al. (författare)
  • Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
  •  
56.
  • Peddinti, Gopal, et al. (författare)
  • Early metabolic markers identify potential targets for the prevention of type 2 diabetes
  • 2017
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; , s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: The aims of this study were to evaluate systematically the predictive power of comprehensive metabolomics profiles in predicting the future risk of type 2 diabetes, and to identify a panel of the most predictive metabolic markers. Methods: We applied an unbiased systems medicine approach to mine metabolite combinations that provide added value in predicting the future incidence of type 2 diabetes beyond known risk factors. We performed mass spectrometry-based targeted, as well as global untargeted, metabolomics, measuring a total of 568 metabolites, in a Finnish cohort of 543 non-diabetic individuals from the Botnia Prospective Study, which included 146 individuals who progressed to type 2 diabetes by the end of a 10 year follow-up period. Multivariate logistic regression was used to assess statistical associations, and regularised least-squares modelling was used to perform machine learning-based risk classification and marker selection. The predictive performance of the machine learning models and marker panels was evaluated using repeated nested cross-validation, and replicated in an independent French cohort of 1044 individuals including 231 participants who progressed to type 2 diabetes during a 9 year follow-up period in the DESIR (Data from an Epidemiological Study on the Insulin Resistance Syndrome) study. Results: Nine metabolites were negatively associated (potentially protective) and 25 were positively associated with progression to type 2 diabetes. Machine learning models based on the entire metabolome predicted progression to type 2 diabetes (area under the receiver operating characteristic curve, AUC = 0.77) significantly better than the reference model based on clinical risk factors alone (AUC = 0.68; DeLong’s p = 0.0009). The panel of metabolic markers selected by the machine learning-based feature selection also significantly improved the predictive performance over the reference model (AUC = 0.78; p = 0.00019; integrated discrimination improvement, IDI = 66.7%). This approach identified novel predictive biomarkers, such as α-tocopherol, bradykinin hydroxyproline, X-12063 and X-13435, which showed added value in predicting progression to type 2 diabetes when combined with known biomarkers such as glucose, mannose and α-hydroxybutyrate and routinely used clinical risk factors. Conclusions/interpretation: This study provides a panel of novel metabolic markers for future efforts aimed at the prevention of type 2 diabetes.
  •  
57.
  • Perry, John R. B., et al. (författare)
  • Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases
  • 2012
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m(2)) compared to obese cases (BMI >= 30 Kg/m(2)). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m(2)) or 4,123 obese cases (BMI >= 30 kg/m(2)), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4610 29, OR = 1.13 [95% CI 1.09-1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00-1.06]). A variant in HMG20A-previously identified in South Asians but not Europeans-was associated with type 2 diabetes in obese cases (P = 1.3 x 10(-8), OR= 1.11 [95% CI 1.07-1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02-1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10-1.17], P = 3.2 x 10(-14). This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05-1.08], P = 2.2 x 10(-16). This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.
  •  
58.
  • Pervjakova, Natalia, et al. (författare)
  • Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes
  • 2022
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 31:19, s. 3377-3391
  • Tidskriftsartikel (refereegranskat)abstract
    • Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy (GenDIP) Consortium assembled genome-wide association studies (GWAS) of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (p < 5x10-8) with GDM, mapping to/near MTNR1B (p = 4.3x10-54), TCF7L2 (p = 4.0x10-16), CDKAL1 (p = 1.6 × 10-14), CDKN2A-CDKN2B (p = 4.1x10-9) and HKDC1 (p = 2.9x10-8). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D; and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomisation analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.
  •  
59.
  • Prokopenko, Inga, et al. (författare)
  • A Central Role for GRB10 in Regulation of Islet Function in Man.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.
  •  
60.
  • Repapi, Emmanouela, et al. (författare)
  • Genome-wide association study identifies five loci associated with lung function.
  • 2010
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:1, s. 36-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary function measures are heritable traits that predict morbidity and mortality and define chronic obstructive pulmonary disease (COPD). We tested genome-wide association with forced expiratory volume in 1 s (FEV(1)) and the ratio of FEV(1) to forced vital capacity (FVC) in the SpiroMeta consortium (n = 20,288 individuals of European ancestry). We conducted a meta-analysis of top signals with data from direct genotyping (n < or = 32,184 additional individuals) and in silico summary association data from the CHARGE Consortium (n = 21,209) and the Health 2000 survey (n < or = 883). We confirmed the reported locus at 4q31 and identified associations with FEV(1) or FEV(1)/FVC and common variants at five additional loci: 2q35 in TNS1 (P = 1.11 x 10(-12)), 4q24 in GSTCD (2.18 x 10(-23)), 5q33 in HTR4 (P = 4.29 x 10(-9)), 6p21 in AGER (P = 3.07 x 10(-15)) and 15q23 in THSD4 (P = 7.24 x 10(-15)). mRNA analyses showed expression of TNS1, GSTCD, AGER, HTR4 and THSD4 in human lung tissue. These associations offer mechanistic insight into pulmonary function regulation and indicate potential targets for interventions to alleviate respiratory disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 80
Typ av publikation
tidskriftsartikel (79)
konferensbidrag (1)
Typ av innehåll
refereegranskat (80)
Författare/redaktör
Froguel, Philippe (79)
Wareham, Nicholas J. (39)
McCarthy, Mark I (36)
Langenberg, Claudia (33)
Groop, Leif (32)
Hansen, Torben (32)
visa fler...
Boehnke, Michael (32)
Loos, Ruth J F (32)
Prokopenko, Inga (30)
Laakso, Markku (29)
Pedersen, Oluf (29)
Gieger, Christian (29)
Kuusisto, Johanna (28)
Morris, Andrew P. (27)
Mohlke, Karen L (26)
Jackson, Anne U. (26)
Metspalu, Andres (24)
Balkau, Beverley (24)
Lind, Lars (23)
van Duijn, Cornelia ... (23)
Tuomilehto, Jaakko (23)
Barroso, Ines (23)
Frayling, Timothy M (23)
Grallert, Harald (23)
Yengo, Loic (23)
Scott, Robert A (22)
Luan, Jian'an (22)
Uitterlinden, André ... (22)
Hayward, Caroline (22)
Boerwinkle, Eric (22)
Esko, Tõnu (22)
Collins, Francis S. (22)
Stumvoll, Michael (22)
Deloukas, Panos (21)
Stefansson, Kari (21)
Hattersley, Andrew T (21)
Mahajan, Anubha (21)
Kovacs, Peter (21)
Lecoeur, Cecile (21)
Lindgren, Cecilia M. (21)
Zhang, Weihua (21)
Rudan, Igor (20)
Grarup, Niels (20)
Peters, Annette (20)
Strauch, Konstantin (20)
Meitinger, Thomas (20)
Wilson, James F. (20)
Harris, Tamara B (20)
Hofman, Albert (20)
Elliott, Paul (20)
visa färre...
Lärosäte
Lunds universitet (44)
Uppsala universitet (39)
Göteborgs universitet (27)
Karolinska Institutet (27)
Umeå universitet (24)
Kungliga Tekniska Högskolan (3)
visa fler...
Stockholms universitet (3)
Chalmers tekniska högskola (3)
Högskolan Dalarna (3)
Örebro universitet (1)
Handelshögskolan i Stockholm (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (80)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (67)
Naturvetenskap (13)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy