SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Groop Leif) "

Sökning: WFRF:(Groop Leif)

  • Resultat 41-50 av 678
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Ahlqvist, Emma, et al. (författare)
  • Subtypes of type 2 diabetes determined from clinical parameters
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:10, s. 2086-2093
  • Forskningsöversikt (refereegranskat)abstract
    • Type 2 diabetes (T2D) is defined by a single metabolite, glucose, but is increasingly recognized as a highly heterogeneous disease, including individuals with varying clinical characteristics, disease progression, drug response, and risk of complications. Identification of subtypes with differing risk profiles and disease etiologies at diagnosis could open up avenues for personalized medicine and allow clinical resources to be focused to the patients who would be most likely to develop diabetic complications, thereby both im-proving patient health and reducing costs for the health sector. More homogeneous populations also offer increased power in experimental, genetic, and clinical studies. Clinical parameters are easily available and reflect relevant disease pathways, including the effects of both genetic and environmental exposures. We used six clinical parameters (GAD autoantibodies, age at diabetes onset, HbA1c, BMI, and measures of insulin resistance and insulin secretion) to cluster adult-onset diabetes patients into five subtypes. These sub-types have been robustly reproduced in several populations and associated with different risks of complications, comor-bidities, genetics, and response to treatment. Importantly, the group with severe insulin-deficient diabetes (SIDD) had increased risk of retinopathy and neuropathy, whereas the severe insulin-resistant diabetes (SIRD) group had the highest risk for diabetic kidney disease (DKD) and fatty liver, empha-sizing the importance of insulin resistance for DKD and hepatosteatosis in T2D. In conclusion, we believe that sub-classification using these highly relevant parameters could provide a framework for personalized medicine in diabetes.
  •  
42.
  • Ahlqvist, Emma, et al. (författare)
  • The genetics of diabetic complications.
  • 2015
  • Ingår i: Nature Reviews Nephrology. - : Springer Science and Business Media LLC. - 1759-507X .- 1759-5061. ; 11:5, s. 277-287
  • Forskningsöversikt (refereegranskat)abstract
    • The rising global prevalence of diabetes mellitus is accompanied by an increasing burden of morbidity and mortality that is attributable to the complications of chronic hyperglycaemia. These complications include blindness, renal failure and cardiovascular disease. Current therapeutic options for chronic hyperglycaemia reduce, but do not eradicate, the risk of these complications. Success in defining new preventative and therapeutic strategies hinges on an improved understanding of the molecular processes involved in the development of these complications. This Review explores the role of human genetics in delivering such insights, and describes progress in characterizing the sequence variants that influence individual predisposition to diabetic kidney disease, retinopathy, neuropathy and accelerated cardiovascular disease. Numerous risk variants for microvascular complications of diabetes have been reported, but very few have shown robust replication. Furthermore, only limited evidence exists of a difference in the repertoire of risk variants influencing macrovascular disease between those with and those without diabetes. Here, we outline the challenges associated with the genetic analysis of diabetic complications and highlight ongoing efforts to deliver biological insights that can drive translational benefits.
  •  
43.
  • Ahlqvist, Emma, et al. (författare)
  • The genetics of type 2 diabetes
  • 2015. - 4th
  • Ingår i: International Textbook of Diabetes Mellitus. - : Wiley. - 9780470658611 - 9781118387658 ; , s. 401-412
  • Bokkapitel (refereegranskat)
  •  
44.
  • Ahlqvist, Emma, et al. (författare)
  • Towards improved precision and a new classification of diabetes mellitus
  • 2022
  • Ingår i: Journal of Endocrinology. - 1479-6805. ; 252:3, s. 59-70
  • Forskningsöversikt (refereegranskat)abstract
    • Type 2 diabetes (T2D) is one of the fastest increasing diseases worldwide. Although it is defined by a single metabolite, glucose, it is increasingly recognized as a highly heterogeneous disease with varying clinical manifestations. Identification of different subtypes at an early stage of disease when complications might still be prevented could hopefully allow for more personalized medicine. An important step towards precision medicine would be to target the right resources to the right patients, thereby improving patient health and reducing health costs for the society. More well-defined disease populations also offer increased power in experimental, genetic and clinical studies. In a recent study, we used six clinical variables (GAD autoantibodies, age at onset of diabetes, HbA1c, BMI, and simple measures of insulin resistance and insulin secretion (so called HOMA estimates) to cluster adult-onset diabetes patients into five subgroups. These subgroups have been robustly reproduced in several populations worldwide and are associated with different risks of diabetic complications and responses to treatment. Importantly, the group with severe insulin-deficient diabetes (SIDD) had increased risk of retinopathy and neuropathy, whereas the severe insulin-resistant diabetes (SIRD) group has the highest risk for diabetic kidney disease (DKD) and fatty liver. This emphasizes the key role of insulin resistance in the pathogenesis of DKD and fatty liver in T2D. In conclusion, this novel sub-classification, breaking down T2D in clinically meaningful subgroups, provides the prerequisite framework for expanded personalized medicine in diabetes beyond what is already available for monogenic and to some extent type 1 diabetes.
  •  
45.
  • Ahluwalia, Tarun, et al. (författare)
  • Common variants in CNDP1 and CNDP2, and risk of nephropathy in type 2 diabetes.
  • 2011
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 54, s. 2295-2302
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Several genome-wide linkage studies have shown an association between diabetic nephropathy and a locus on chromosome 18q harbouring two carnosinase genes, CNDP1 and CNDP2. Carnosinase degrades carnosine (β-alanyl-L-: histidine), which has been ascribed a renal protective effect as a scavenger of reactive oxygen species. We investigated the putative associations of genetic variants in CNDP1 and CNDP2 with diabetic nephropathy (defined either as micro- or macroalbuminuria) and estimated GFR in type 2 diabetic patients from Sweden. METHODS: We genotyped nine single nucleotide polymorphisms (SNPs) and one trinucleotide repeat polymorphism (D18S880, five to seven leucine repeats) in CNDP1 and CNDP2 in a case-control set-up including 4,888 unrelated type 2 diabetic patients (with and without nephropathy) from Sweden (Scania Diabetes Registry). RESULTS: Two SNPs, rs2346061 in CNDP1 and rs7577 in CNDP2, were associated with an increased risk of diabetic nephropathy (rs2346061 p = 5.07 × 10(-4); rs7577 p = 0.021). The latter was also associated with estimated GFR (β = -0.037, p = 0.014), particularly in women. A haplotype including these SNPs (C-C-G) was associated with a threefold increased risk of diabetic nephropathy (OR 2.98, 95% CI 2.43-3.67, p < 0.0001). CONCLUSIONS/INTERPRETATION: These data suggest that common variants in CNDP1 and CNDP2 play a role in susceptibility to kidney disease in patients with type 2 diabetes.
  •  
46.
  •  
47.
  • Ahluwalia, Tarunveer S, et al. (författare)
  • Uromodulin gene variant is associated with type 2 diabetic nephropathy.
  • 2011
  • Ingår i: Journal of Hypertension. - 1473-5598. ; 29, s. 1731-1734
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: About 35% of individuals with type 2 diabetes develop persistent albuminuria, lose renal function, and are at increased risk for microvascular complications like diabetic nephropathy. Recent genome-wide association studies have identified the uromodulin locus (UMOD), encoding the most common protein in human urine to be associated with hypertension and also with chronic kidney disease (CKD). In the present study we examined the association of the common variant of the uromodulin (UMOD) gene with type 2 diabetic nephropathy and kidney function. METHODS: UMOD variant rs13333226 was genotyped in a case-control material including 4888 unrelated type 2 diabetic individuals (n = 880 with and n = 4008 without nephropathy) from Sweden (Scania Diabetes Registry) using the ABI Real time TaqMan allelic discrimination assay. RESULTS: The G allele of rs13333226 was associated with a decreased risk of nephropathy [odds ratio (OR) 0.80, 95% confidence interval (CI) 0.69-0.91, P = 0.001] after correction for confounding factors like age, sex, body mass index (BMI), blood pressure, kidney function, smoking and duration of diabetes. The same allele was also associated with a better kidney function [estimated glomerular filtration rate (eGFR), β = 0.117, P < 0.0001] and lower systolic blood pressure (β = -0.048, P = 0.013) in the overall study cohort. CONCLUSION/INTERPRETATION: The present study highlights that the common variant of the UMOD gene is protective against diabetic nephropathy susceptibility and also affects kidney function and blood pressure in patients with type 2 diabetes. However, the association with diabetic nephropathy was independent of blood pressure and kidney function.
  •  
48.
  • Ahlzén, Maja, et al. (författare)
  • Expression of the transcription factor 7-like 2 gene (TCF7L2) in human adipocytes is down regulated by insulin.
  • 2008
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 370, s. 49-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants in the TCF7L2 gene (transcription factor 7-like 2) have shown strong association with type 2 diabetes with two defined risk haplotypes, HapA and HapB(T2D). TCF7L2 may play a role in both glucose homeostasis and adipogenesis. Our aim was to characterize the TCF7L2 mRNA expression and regulation in human adipose tissue. We quantified TCF7L2 mRNA levels in cultured human adipocytes and in biopsies from visceral (VAT) and subcutaneous (SAT) adipose tissue from 38 obese non-diabetic subjects, using real-time PCR. The influence of haplotype and clinical traits on TCF7L2 mRNA levels were investigated. In vitro, insulin decreased TCF7L2 mRNA expression. This effect was attenuated in cells incubated with the free fatty acids palmitate or oleate. In vivo, we found significantly higher expression in SAT from more insulin resistant subjects. No correlations between TCF7L2 mRNA expression and obesity measures were observed. TCF7L2 expression was higher in VAT than in SAT and when stratifying for haplotype, this difference was seen in HapA carriers but not in non-HapA carriers. In conclusion, TCF7L2 mRNA levels in adipocytes are decreased by insulin and seem to increase in insulin resistant subjects and in HapA carriers.
  •  
49.
  • Ahmad, Shafqat, et al. (författare)
  • Telomere length in blood and skeletal muscle in relation to measures of glycaemia and insulinaemia.
  • 2012
  • Ingår i: Diabetic Medicine: A journal of the British Diabetic Association. - : Wiley. - 1464-5491 .- 0742-3071. ; 29:10, s. 377-381
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Skeletal muscle is a major metabolic organ and plays important roles in glucose metabolism, insulin sensitivity and insulin action. Muscle telomere length reflects the myocyte's exposure to harmful environmental factors. Leukocyte telomere length is considered a marker of muscle telomere length and is used in epidemiologic studies to assess associations with ageing-related diseases where muscle physiology is important. However, the extent to which leucocyte and muscle telomere length are correlated is unknown, as are their relative correlations with glucose and insulin concentrations. The purpose of this study was to determine the extent of these relationships. Methods: Leucocyte and muscle telomere length were measured by quantitative real-time polymerase chain reaction in participants from the Malmö Exercise Intervention (n = 27) and the Prevalence, Prediction and Prevention of Diabetes-Botnia studies (n = 31). Participants in both studies were free from Type 2 diabetes. We assessed the association between leucocyte telomere length, muscle telomere length and metabolic traits using Spearmen correlations and multivariate linear regression. Bland-Altman analysis was used to assess agreement between leucocyte and muscle telomere length. Results: In age-, study-, diabetes family history- and sex-adjusted models, leucocyte and muscle telomere length were positively correlated (r = 0.39, 95% CI 0.15-0.59). Leucocyte telomere length was inversely associated with 2-h glucose concentrations (r = -0.58, 95% CI -1.0 to -0.16), but there was no correlation between muscle telomere length and 2-h glucose concentrations (r = 0.05, 95% CI -0.35 to 0.46) or between leucocyte or muscle telomere length with other metabolic traits. Conclusions: In summary, the current study supports the use of leucocyte telomere length as a proxy for muscle telomere length in epidemiological studies of Type 2 diabetes aetiology.
  •  
50.
  • Ahuja, Vasudha, et al. (författare)
  • Accuracy of 1-Hour Plasma Glucose During the Oral Glucose Tolerance Test in Diagnosis of Type 2 Diabetes in Adults : A Meta-analysis
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 44:4, s. 1062-1069
  • Forskningsöversikt (refereegranskat)abstract
    • OBJECTIVE: One-hour plasma glucose (1-h PG) during the oral glucose tolerance test (OGTT) is an accurate predictor of type 2 diabetes. We performed a meta-analysis to determine the optimum cutoff of 1-h PG for detection of type 2 diabetes using 2-h PG as the gold standard. RESEARCH DESIGN AND METHODS: We included 15 studies with 35,551 participants from multiple ethnic groups (53.8% Caucasian) and 2,705 newly detected cases of diabetes based on 2-h PG during OGTT. We excluded cases identified only by elevated fasting plasma glucose and/or HbA1c. We determined the optimal 1-h PG threshold and its accuracy at this cutoff for detection of diabetes (2-h PG ≥11.1 mmol/L) using a mixed linear effects regression model with different weights to sensitivity/specificity (2/3, 1/2, and 1/3). RESULTS: Three cutoffs of 1-h PG, at 10.6 mmol/L, 11.6 mmol/L, and 12.5 mmol/L, had sensitivities of 0.95, 0.92, and 0.87 and specificities of 0.86, 0.91, and 0.94 at weights 2/3, 1/2, and 1/3, respectively. The cutoff of 11.6 mmol/L (95% CI 10.6, 12.6) had a sensitivity of 0.92 (0.87, 0.95), specificity of 0.91 (0.88, 0.93), area under the curve 0.939 (95% confidence region for sensitivity at a given specificity: 0.904, 0.946), and a positive predictive value of 45%. CONCLUSIONS: The 1-h PG of ≥11.6 mmol/L during OGTT has a good sensitivity and specificity for detecting type 2 diabetes. Prescreening with a diabetes-specific risk calculator to identify high-risk individuals is suggested to decrease the proportion of false-positive cases. Studies including other ethnic groups and assessing complication risk are warranted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 678
Typ av publikation
tidskriftsartikel (618)
konferensbidrag (36)
forskningsöversikt (19)
bokkapitel (4)
annan publikation (1)
Typ av innehåll
refereegranskat (667)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Groop, Leif (663)
Tuomi, Tiinamaija (137)
Lyssenko, Valeriya (130)
Almgren, Peter (99)
Ahlqvist, Emma (79)
McCarthy, Mark I (75)
visa fler...
Melander, Olle (74)
Orho-Melander, Marju (74)
Isomaa, Bo (61)
Boehnke, Michael (59)
Laakso, Markku (56)
Hansson, Ola (53)
Tuomilehto, Jaakko (52)
Ling, Charlotte (50)
Salomaa, Veikko (48)
Altshuler, David (46)
Wareham, Nicholas J. (45)
Nilsson, Peter (44)
Mohlke, Karen L (43)
Kuusisto, Johanna (42)
Lindgren, Cecilia M. (42)
Hansen, Torben (40)
Prokopenko, Inga (40)
Lind, Lars (39)
Prasad, Rashmi B. (39)
Jackson, Anne U. (39)
Ladenvall, Claes (38)
Pedersen, Oluf (38)
Langenberg, Claudia (38)
Palmer, Colin N. A. (38)
Collins, Francis S. (38)
Ingelsson, Erik (37)
Stefansson, Kari (37)
Franks, Paul W. (36)
Gieger, Christian (36)
Barroso, Ines (35)
Grallert, Harald (35)
Thorleifsson, Gudmar (34)
Thorsteinsdottir, Un ... (34)
Loos, Ruth J F (34)
Frayling, Timothy M (34)
Tuomi, T. (33)
Ridderstråle, Martin (33)
Froguel, Philippe (33)
Hirschhorn, Joel N. (33)
Vaag, Allan (31)
Fadista, Joao (30)
Hattersley, Andrew T (30)
Mahajan, Anubha (30)
Voight, Benjamin F. (30)
visa färre...
Lärosäte
Lunds universitet (666)
Karolinska Institutet (104)
Uppsala universitet (91)
Göteborgs universitet (57)
Umeå universitet (55)
Stockholms universitet (6)
visa fler...
Linköpings universitet (6)
Mittuniversitetet (6)
Chalmers tekniska högskola (4)
Örebro universitet (3)
Malmö universitet (3)
Högskolan Dalarna (3)
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
Högskolan i Gävle (1)
Handelshögskolan i Stockholm (1)
visa färre...
Språk
Engelska (670)
Svenska (4)
Finska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (668)
Naturvetenskap (22)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy