SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hanson U.) "

Sökning: WFRF:(Hanson U.)

  • Resultat 41-50 av 261
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Aartsen, M. G., et al. (författare)
  • An All-Sky Search For Three Flavors Of Neutrinos From Gamma-Ray Bursts With The Icecube Neutrino Observatory
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 824:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.
  •  
42.
  • Aartsen, M. G., et al. (författare)
  • Anisotropy In Cosmic-Ray Arrival Directions In The Southern Hemisphere Based On Six Years Of Data From The Icecube Detector
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 826:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10(-3) up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (l <= 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10 degrees, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large-and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
  •  
43.
  • Aartsen, M. G., et al. (författare)
  • Astrophysical neutrinos and cosmic rays observed by IceCube
  • 2018
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 62:10, s. 2902-2930
  • Tidskriftsartikel (refereegranskat)abstract
    • The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of IceCube data, and their implications to our understanding of cosmic rays.
  •  
44.
  • Aartsen, M. G., et al. (författare)
  • Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 849:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially extended flux from the entire plane, both of which are maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and in the benchmark case of an unbroken E-2.5 power-law energy spectrum, we set 90% confidence level upper limits, constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. above 1 TeV. A stacking method is also used to test catalogs of known high-energy Galactic gamma-ray sources.
  •  
45.
  • Aartsen, M. G., et al. (författare)
  • Constraints on Minute-Scale Transient Astrophysical Neutrino Sources
  • 2019
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 122:5
  • Tidskriftsartikel (refereegranskat)abstract
    • High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100 s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations. Here, we calculate generic bounds on the neutrino flux of short-lived transient sources. Assuming an E-2.5 neutrino spectrum, we find that the neutrino flux of rare sources, like long gamma-ray bursts, is constrained to < 5% of the detected astrophysical flux and the energy released in neutrinos (100 GeV to 10 PeV) by a median bright GRB-like source is < 10(52.5) erg. For a harder E-2.13 neutrino spectrum up to 30% of the flux could be produced by GRBs and the allowed median source energy is < 10(52) erg. A hypothetical population of transient sources has to be more common than 10(-5) Mpc(-3) yr(-1) (5 x 10(-8) Mpc(-3) yr(-1) for the E-2.13 spectrum) to account for the complete astrophysical neutrino flux.
  •  
46.
  • Aartsen, M. G., et al. (författare)
  • Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube
  • 2016
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 117:24
  • Tidskriftsartikel (refereegranskat)abstract
    • We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10(9) GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high-energy neutrino-induced events which have deposited energies from 5 x 10(5) GeV to above 10(11) GeV. Two neutrino-induced events with an estimated deposited energy of (2.6 +/- 0.3) x 10(6) GeV, the highest neutrino energy observed so far, and (7.7 +/- 2.0) x 10(5) GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6 sigma. The hypothesis that the observed events are of cosmogenic origin is also rejected at > 99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and gamma-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.
  •  
47.
  • Aartsen, M. G., et al. (författare)
  • Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube
  • 2019
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 100:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on measurements of the all-particle cosmic ray energy spectrum and composition in the PeV to EeV energy range using 3 years of data from the IceCube Neutrino Observatory. The IceTop detector measures cosmic ray induced air showers on the surface of the ice, from which the energy spectrum of cosmic rays is determined by making additional assumptions about the mass composition. A separate measurement is performed when IceTop data are analyzed in coincidence with the high-energy muon energy loss information from the deep in-ice IceCube detector. In this measurement, both the spectrum and the mass composition of the primary cosmic rays are simultaneously reconstructed using a neural network trained on observables from both detectors. The performance and relative advantages of these two distinct analyses are discussed, including the systematic uncertainties and the dependence on the hadronic interaction models, and both all-particle spectra as well as individual spectra for elemental groups are presented.
  •  
48.
  • Aartsen, M. G., et al. (författare)
  • Detection of the Temporal Variation of the Sun's Cosmic Ray Shadow with the IceCube Detector
  • 2019
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 872:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observation of a deficit in the cosmic ray flux from the directions of the Moon and Sun with five years of data taken by the IceCube Neutrino Observatory. Between 2010 May and 2011 May the IceCube detector operated with 79 strings deployed in the glacial ice at the South Pole, and with 86 strings between 2011 May and 2015 May. A binned analysis is used to measure the relative deficit and significance of the cosmic ray shadows. Both the cosmic ray Moon and Sun shadows are detected with high statistical significance (>10σ) for each year. The results for the Moon shadow are consistent with previous analyses and verify the stability of the IceCube detector over time. This work represents the first observation of the Sun shadow with the IceCube detector. We show that the cosmic ray shadow of the Sun varies with time. These results make it possible to study cosmic ray transport near the Sun with future data from IceCube.
  •  
49.
  • Aartsen, M. G., et al. (författare)
  • Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data IceCube Collaboration
  • 2020
  • Ingår i: European Physical Journal C. - : SPRINGER. - 1434-6044 .- 1434-6052. ; 80:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above similar to 1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of pIO=15.3% and CLs=53.3% for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of delta CP and obtained from energies E nu greater than or similar to 5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.
  •  
50.
  • Aartsen, M. G., et al. (författare)
  • Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data
  • 2018
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 98:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a quasidifferential upper limit on the extremely-high-energy (EHE) neutrino flux above 5 x 10(6) GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10(6) GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5 x 10(6) and 2 x 10(10) GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of E-nu(2)phi(nu e+nu mu+nu tau) similar or equal to 2 x 10(-8) GeV/cm(2) sec sr at 10(9) GeV. A significant part of the parameter space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is disfavored independently of uncertain models of the extragalactic background light which previous IceCube constraints partially relied on.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 261
Typ av publikation
tidskriftsartikel (238)
konferensbidrag (9)
forskningsöversikt (3)
rapport (1)
annan publikation (1)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (244)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Barwick, S. W. (139)
Adams, J. (138)
Besson, D. Z. (138)
Ryckbosch, D. (137)
Aguilar, J. A. (136)
Beatty, J. J. (136)
visa fler...
Karle, A. (136)
Hanson, K. (135)
Montaruli, T. (135)
Seckel, D. (135)
Hoffman, K. D. (134)
Kiryluk, J. (134)
Sarkar, S. (134)
Stezelberger, T. (134)
Kolanoski, H. (133)
Kowalski, M. (133)
Van Eijndhoven, N. (133)
Berley, D. (133)
Bernardini, E. (133)
Fazely, A. R. (133)
Grant, D. (133)
Helbing, K. (133)
Hickford, S. (133)
Ishihara, A. (133)
Karg, T. (133)
Meagher, K. (133)
Naumann, U. (133)
Olivas, A. (133)
Przybylski, G. T. (133)
Resconi, E. (133)
Rhode, W. (133)
Rott, C. (133)
Schmidt, T. (133)
Bai, X. (132)
Blaufuss, E. (132)
De Clercq, C. (132)
Desiati, P. (132)
Gerhardt, L. (132)
Halzen, F. (132)
Hoshina, K. (132)
Japaridze, G. S. (132)
Kappes, A. (132)
Madsen, J. (132)
Maruyama, R. (132)
Rawlins, K. (132)
Ruhe, T. (132)
Seunarine, S. (132)
Spiering, C. (132)
Stanev, T. (132)
Taboada, I. (132)
visa färre...
Lärosäte
Stockholms universitet (161)
Uppsala universitet (153)
Karolinska Institutet (58)
Göteborgs universitet (23)
Lunds universitet (23)
Chalmers tekniska högskola (16)
visa fler...
Högskolan Dalarna (6)
Örebro universitet (5)
Umeå universitet (4)
Kungliga Tekniska Högskolan (4)
Linköpings universitet (3)
Linnéuniversitetet (3)
Sveriges Lantbruksuniversitet (3)
Högskolan i Halmstad (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (260)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (169)
Medicin och hälsovetenskap (47)
Samhällsvetenskap (10)
Teknik (4)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy