SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hedman Åsa K) "

Sökning: WFRF:(Hedman Åsa K)

  • Resultat 21-30 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Allum, Fiona, et al. (författare)
  • Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Most genome-wide methylation studies (EWAS) of multifactorial disease traits use targeted arrays or enrichment methodologies preferentially covering CpG-dense regions, to characterize sufficiently large samples. To overcome this limitation, we present here a new customizable, cost-effective approach, methylC-capture sequencing (MCC-Seq), for sequencing functional methylomes, while simultaneously providing genetic variation information. To illustrate MCC-Seq, we use whole-genome bisulfite sequencing on adipose tissue (AT) samples and public databases to design AT-specific panels. We establish its efficiency for high-density interrogation of methylome variability by systematic comparisons with other approaches and demonstrate its applicability by identifying novel methylation variation within enhancers strongly correlated to plasma triglyceride and HDL-cholesterol, including at CD36. Our more comprehensive AT panel assesses tissue methylation and genotypes in parallel at ∼4 and ∼3 M sites, respectively. Our study demonstrates that MCC-Seq provides comparable accuracy to alternative approaches but enables more efficient cataloguing of functional and disease-relevant epigenetic and genetic variants for large-scale EWAS.
  •  
22.
  • Cho, Yoon Shin, et al. (författare)
  • Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians.
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in east Asian populations. We followed our stage 1 meta-analysis of eight T2D genome-wide association studies (6,952 cases with T2D and 11,865 controls) with a stage 2 in silico replication analysis (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3. GLIS3, which is involved in pancreatic beta cell development and insulin gene expression, is known for its association with fasting glucose levels. The evidence of an association with T2D for PEPD and HNF4A has been shown in previous studies. KCNK16 may regulate glucose-dependent insulin secretion in the pancreas. These findings, derived from an east Asian population, provide new perspectives on the etiology of T2D.
  •  
23.
  • Drong, Alexander W, et al. (författare)
  • The presence of methylation quantitative trait loci indicates a direct genetic influence on the level of DNA methylation in adipose tissue.
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants that associate with DNA methylation at CpG sites (methylation quantitative trait loci, meQTLs) offer a potential biological mechanism of action for disease associated SNPs. We investigated whether meQTLs exist in abdominal subcutaneous adipose tissue (SAT) and if CpG methylation associates with metabolic syndrome (MetSyn) phenotypes. We profiled 27,718 genomic regions in abdominal SAT samples of 38 unrelated individuals using differential methylation hybridization (DMH) together with genotypes at 5,227,243 SNPs and expression of 17,209 mRNA transcripts. Validation and replication of significant meQTLs was pursued in an independent cohort of 181 female twins. We find that, at 5% false discovery rate, methylation levels of 149 DMH regions associate with at least one SNP in a ±500 kilobase cis-region in our primary study. We sought to validate 19 of these in the replication study and find that five of these significantly associate with the corresponding meQTL SNPs from the primary study. We find that none of the 149 meQTL top SNPs is a significant expression quantitative trait locus in our expression data, but we observed association between expression levels of two mRNA transcripts and cis-methylation status. Our results indicate that DNA CpG methylation in abdominal SAT is partly under genetic control. This study provides a starting point for future investigations of DNA methylation in adipose tissue.
  •  
24.
  • Glass, Daniel, et al. (författare)
  • Gene expression changes with age in skin, adipose tissue, blood and brain.
  • 2013
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 14:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age.RESULTS: Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues.CONCLUSIONS: Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.
  •  
25.
  • Grundberg, Elin, et al. (författare)
  • Mapping cis- and trans-regulatory effects across multiple tissues in twins.
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.
  •  
26.
  • Hansson, Oskar, et al. (författare)
  • The genetic regulation of protein expression in cerebrospinal fluid
  • 2023
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of the genetic regulation of cerebrospinal fluid (CSF) proteins may reveal pathways for treatment of neurological diseases. 398 proteins in CSF were measured in 1,591 participants from the BioFINDER study. Protein quantitative trait loci (pQTL) were identified as associations between genetic variants and proteins, with 176 pQTLs for 145 CSF proteins (P < 1.25 × 10−10, 117 cis-pQTLs and 59 trans-pQTLs). Ventricular volume (measured with brain magnetic resonance imaging) was a confounder for several pQTLs. pQTLs for CSF and plasma proteins were overall correlated, but CSF-specific pQTLs were also observed. Mendelian randomization analyses suggested causal roles for several proteins, for example, ApoE, CD33, and GRN in Alzheimer's disease, MMP-10 in preclinical Alzheimer's disease, SIGLEC9 in amyotrophic lateral sclerosis, and CD38, GPNMB, and ADAM15 in Parkinson's disease. CSF levels of GRN, MMP-10, and GPNMB were altered in Alzheimer's disease, preclinical Alzheimer's disease, and Parkinson's disease, respectively. These findings point to pathways to be explored for novel therapies. The novel finding that ventricular volume confounded pQTLs has implications for design of future studies of the genetic regulation of the CSF proteome.
  •  
27.
  • Hedman, Åsa K., et al. (författare)
  • DNA methylation patterns associated with oxidative stress in an ageing population
  • 2016
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Oxidative stress has been related to type 2 diabetes (T2D) and cardiovascular disease (CVD), the leading global cause of death. Contributions of environmental factors such as oxidative stress on complex traits and disease may be partly mediated through changes in epigenetic marks (e.g. DNA methylation). Studies relating differential methylation with intermediate phenotypes and disease endpoints may be useful in identifying additional candidate genes and mechanisms involved in disease. Methods: To investigate the role of epigenetic variation in oxidative stress marker levels and subsequent development of CVD and T2D, we performed analyses of genome-wide DNA methylation in blood, ten markers of oxidative stress (total glutathione [TGSH], reduced glutathione [GSH], oxidised glutathione [GSSG], GSSG to GSH ratio, homocysteine [HCY], oxidised low-density lipoprotein (oxLDL), antibodies against oxLDL [OLAB], conjugated dienes [CD], baseline conjugated dienes [BCD]-LDL and total antioxidant capacity [TAOC]) and incident disease in up to 966 age-matched individuals. Results: In total, we found 66 cytosine-guanine (CpG) sites associated with one or more oxidative stress markers (false discovery rate [FDR] <0.05). These sites were enriched in regulatory regions of the genome. Genes annotated to CpG sites showed enrichment in annotation clusters relating to phospho-metabolism and proteins with pleckstrin domains. We investigated the contribution of oxidative stress-associated CpGs to development of cardiometabolic disease. Methylation variation at CpGs in the 3'-UTR of HIST1H4D (cg08170869; histone cluster 1, H4d) and in the body of DVL1 (cg03465880; dishevelled-1) were associated with incident T2D events during 10 years of follow-up (all permutation p-values < 0.01), indicating a role of epigenetic regulation in oxidative stress processes leading to development or progression of diabetes. Methylation QTL (meQTL) analysis showed significant associations with genetic sequence variants in cis at 28 (42%) of oxidative stress phenotype-associated sites (FDR < 0.05). Integrating cis-meQTLs with genotype-phenotype associations indicated that genetic effects on oxidative stress phenotype at one locus (cg07547695; BCL2L11) may be mediated through DNA methylation. Conclusions: In conclusion, we report novel associations of DNA methylation with oxidative stress, some of which also show evidence of a relation with T2D incidence.
  •  
28.
  •  
29.
  • Keildson, Sarah, et al. (författare)
  • Expression of phosphofructokinase in skeletal muscle is influenced by genetic variation and associated with insulin sensitivity.
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Using an integrative approach in which genetic variation, gene expression, and clinical phenotypes are assessed in relevant tissues may help functionally characterize the contribution of genetics to disease susceptibility. We sought to identify genetic variation influencing skeletal muscle gene expression (expression quantitative trait loci [eQTLs]) as well as expression associated with measures of insulin sensitivity. We investigated associations of 3,799,401 genetic variants in expression of >7,000 genes from three cohorts (n = 104). We identified 287 genes with cis-acting eQTLs (false discovery rate [FDR] <5%; P < 1.96 × 10(-5)) and 49 expression-insulin sensitivity phenotype associations (i.e., fasting insulin, homeostasis model assessment-insulin resistance, and BMI) (FDR <5%; P = 1.34 × 10(-4)). One of these associations, fasting insulin/phosphofructokinase (PFKM), overlaps with an eQTL. Furthermore, the expression of PFKM, a rate-limiting enzyme in glycolysis, was nominally associated with glucose uptake in skeletal muscle (P = 0.026; n = 42) and overexpressed (Bonferroni-corrected P = 0.03) in skeletal muscle of patients with T2D (n = 102) compared with normoglycemic controls (n = 87). The PFKM eQTL (rs4547172; P = 7.69 × 10(-6)) was nominally associated with glucose uptake, glucose oxidation rate, intramuscular triglyceride content, and metabolic flexibility (P = 0.016-0.048; n = 178). We explored eQTL results using published data from genome-wide association studies (DIAGRAM and MAGIC), and a proxy for the PFKM eQTL (rs11168327; r(2) = 0.75) was nominally associated with T2D (DIAGRAM P = 2.7 × 10(-3)). Taken together, our analysis highlights PFKM as a potential regulator of skeletal muscle insulin sensitivity.
  •  
30.
  • Parts, Leopold, et al. (författare)
  • Extent, causes, and consequences of small RNA expression variation in human adipose tissue.
  • 2012
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 32
Typ av publikation
tidskriftsartikel (30)
annan publikation (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Hedman, Åsa K (31)
Lind, Lars (15)
Deloukas, Panos (12)
McCarthy, Mark I (12)
Gustafsson, Stefan (11)
Spector, Tim D. (9)
visa fler...
Ingelsson, Erik (8)
Gieger, Christian (7)
Johansson, Åsa (6)
Sundström, Johan (6)
Peters, Annette (6)
Grundberg, Elin (6)
Wareham, Nicholas J. (5)
Langenberg, Claudia (5)
Pedersen, Nancy L (5)
Mahajan, Anubha (5)
Walker, Mark (5)
Spector, Timothy D (5)
Vohl, Marie-Claude (5)
Wilson, James F. (5)
Perola, Markus (4)
Raitakari, Olli T (4)
Dermitzakis, Emmanou ... (4)
Campbell, Harry (4)
Ohlsson, Claes, 1965 (4)
Shungin, Dmitry (4)
Hallmans, Göran (4)
Eriksson, Per (4)
Demirkan, Ayse (4)
van Duijn, Cornelia ... (4)
Mohlke, Karen L (4)
Scott, Robert A (4)
Hunter, David J (4)
Lehtimäki, Terho (4)
Shuldiner, Alan R. (4)
Mangino, Massimo (4)
Folkersen, Lasse (4)
Gyllensten, Ulf (4)
Luan, Jian'an (4)
Sandling, Johanna K. (4)
Männistö, Satu (4)
Karpe, Fredrik (4)
Ärnlöv, Johan (4)
Eriksson, Johan G. (4)
Rivadeneira, Fernand ... (4)
Jousilahti, Pekka (4)
Harris, Tamara B (4)
Liu, Yongmei (4)
Loos, Ruth J F (4)
Hofman, Albert (4)
visa färre...
Lärosäte
Uppsala universitet (30)
Karolinska Institutet (15)
Lunds universitet (9)
Göteborgs universitet (8)
Umeå universitet (6)
Högskolan Dalarna (3)
visa fler...
Kungliga Tekniska Högskolan (1)
Jönköping University (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (32)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy