SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henningsson S) "

Sökning: WFRF:(Henningsson S)

  • Resultat 41-50 av 55
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Lundquist, Ingmar, et al. (författare)
  • Carbon monoxide stimulates insulin release and propagates Ca2+ signals between pancreatic beta-cells
  • 2003
  • Ingår i: American Journal of Physiology: Endocrinology and Metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 285:5, s. 1055-1063
  • Tidskriftsartikel (refereegranskat)abstract
    • A key question for understanding the mechanisms of pulsatile insulin release is how the underlying beta-cell oscillations of the cytoplasmic Ca2+ concentration ([Ca2+](i)) are synchronized within and among the islets in the pancreas. Nitric oxide has been proposed to coordinate the activity of the beta-cells by precipitating transients of [Ca2+](i). Comparing ob/ob mice and lean controls, we have now studied the action of carbon monoxide (CO), another neurotransmitter with stimulatory effects on cGMP production. A strong immunoreactivity for the CO-producing constitutive heme oxygenase (HO-2) was found in ganglionic cells located in the periphery of the islets and in almost all islet endocrine cells. Islets from ob/ob mice had sixfold higher generation of CO ( 1 nmol.min(-1).mg protein(-1)) than the lean controls. This is 100-fold the rate for their constitutive production of NO. Moreover, islets from ob/ob mice showed a threefold increase in HO-2 expression and expressed inducible HO (HO-1). The presence of an excessive islet production of CO in the ob/ob mouse had its counterpart in a pronounced suppression of the glucose-stimulated insulin release from islets exposed to the HO inhibitor Zn-protoporhyrin (10 muM) and in a 16 times higher frequency of [Ca2+](i) transients in their beta-cells. Hemin (0.1 and 1.0 muM), the natural substrate for HO, promoted the appearance of [Ca2+](i) transients, and 10 muM of the HO inhibitors Zn-protoporphyrin and Cr-mesoporphyrin had a suppressive action both on the firing of transients and their synchronization. It is concluded that the increased islet production of CO contributes to the hyperinsulinemia in ob/ob mice. In addition to serving as a positive modulator of glucose-stimulated insulin release, CO acts as a messenger propagating Ca2+ signals with coordinating effects on the beta-cell rhythmicity.
  •  
42.
  • Mosén, Henrik, et al. (författare)
  • Defective glucose-stimulated insulin release in the diabetic Goto-Kakizaki (GK) rat coincides with reduced activity of the islet carbon monoxide signaling pathway
  • 2005
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 146:3, s. 1553-1558
  • Tidskriftsartikel (refereegranskat)abstract
    • The Goto-Kakizaki (GK) rat displays a markedly reduced insulin response to glucose, a defect that is thought to be coupled to an impaired glucose signaling in the beta-cell. We have examined whether carbon monoxide (CO), derived from beta-cell heme oxygenase (HO), might be involved in the secretory dysfunction. Immunocytochemical labeling of constitutive HO (HO-2) showed no overt difference in fluorescence pattern in islets from GK vs. Wistar controls. However, isolated islets from GK rats displayed a markedly impaired HO activity measured as CO production (-50%), and immunoblotting revealed an approximately 50% reduction of HO-2 protein expression compared with Wistar controls. Furthermore, there was a prominent expression of inducible HO (HO-1) in GK islets. Incubation of isolated islets showed that the glucose-stimulated CO production and the glucose-stimulated insulin response were considerably reduced in GK islets compared with Wistar islets. Addition of the HO activator hemin or gaseous CO to the incubation media brought about a similar amplification of glucose-stimulated insulin release in GK and Wistar islets, suggesting that distal steps in the HO-CO signaling pathway were not appreciably affected. We conclude that the defective insulin response to glucose in the GK rat can be explained, at least in part, by a marked impairment of the glucose-HO-CO signaling pathway as manifested by a prominent decrease in glucose stimulation of islet CO production and a reduced expression of HO-2. A possible role of HO-1 expression as a compensatory mechanism in the GK islets is presently unclear.
  •  
43.
  • Mosén, Henrik, et al. (författare)
  • Impaired glucose-stimulated insulin secretion in the GK rat is associated with abnormalities in islet nitric oxide production.
  • 2008
  • Ingår i: Regulatory Peptides. - : Elsevier BV. - 1873-1686 .- 0167-0115. ; 151, s. 139-146
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated implications of nitric oxide (NO) derived from islet neuronal constitutive NO synthase (ncNOS) and inducible NOS (iNOS) on insulin secretory mechanisms in the mildly diabetic GK rat. Islets from GK rats and Wistar controls were analysed for ncNOS and iNOS by HPLC, immunoblotting and immunocytochemistry in relation to insulin secretion stimulated by glucose or l-arginine in vitro and in vivo. No obvious difference in ncNOS fluorescence in GK vs control islets was seen but freshly isolated GK islets displayed a marked iNOS expression and activity. After incubation at low glucose GK islets showed an abnormal increase in both iNOS and ncNOS activities. At high glucose the impaired glucose-stimulated insulin release was associated with an increased iNOS expression and activity and NOS inhibition dose-dependently amplified insulin secretion in both GK and control islets. This effect by NOS inhibition was also evident in depolarized islets at low glucose, where forskolin had a further amplifying effect in GK but not in control islets. NOS inhibition increased basal insulin release in perfused GK pancreata and amplified insulin release after glucose stimulation in both GK and control pancreata, almost abrogating the nadir separating first and second phase in controls. A defective insulin response to l-arginine was seen in GK rats in vitro and in vivo, being partially restored by NOS inhibition. The results suggest that increased islet NOS activities might contribute to the defective insulin response to glucose and l-arginine in the GK rat. Excessive iNOS expression and activity might be deleterious for the beta-cells over time.
  •  
44.
  •  
45.
  •  
46.
  • Salehi, S Albert, et al. (författare)
  • Dysfunction of the islet lysosomal system conveys impairment of glucose-induced insulin release in the diabetic GK rat
  • 1999
  • Ingår i: Endocrinology. - 0013-7227. ; 140:7, s. 3045-3053
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulated evidence links an important signal involved in glucose-stimulated insulin release to the activation of the islet lysosomal glycogenolytic enzyme acid glucan-1,4-alpha-glucosidase. We have analyzed the function of the lysosomal system/lysosomal enzyme activities in pancreatic islets of young (6-8 weeks), spontaneously diabetic, GK (Goto-Kakizaki) rats and Wistar control rats in relation to glucose-induced insulin release. The insulin secretory response to glucose was markedly impaired in the GK rat, but was restored by the adenylate cyclase activator forskolin. Islet activities of classical lysosomal enzymes, e.g.. acid phosphatase, N-acetyl-beta-D-glucosaminidase, beta-glucuronidase, and cathepsin D, were reduced by 20-35% in the GK rat compared with those in Wistar controls. In contrast, the activities of the lysosomal alpha-glucosidehydrolases, i.e.. acid glucan-1,4-alpha-glucosidase and acid alpha-glucosidase, were increased by 40-50%. Neutral alpha-glucosidase (endoplasmic reticulum) was unaffected. Comparative analysis of liver tissue showed that lysosomal enzyme activities were of the same magnitude in GK and Wistar rats. Notably, in Wistar rats, the activities of acid glucan-1,4-alpha-glucosidase and acid alpha-glucosidase were approximately 15-fold higher in islets than in liver. Other lysosomal enzymes did not display such a difference. Normalization of glycemia in GK rats by phlorizin administered for 9 days did not influence either the lysosomal alpha-glucosidehydrolase activities or other lysosomal enzyme activities in GK islets. Finally, the pseudotetrasaccharide acarbose, which accumulates in the lysosomal system, inhibited acid glucan-1,4-alpha-glucosidase activity in parallel with its inhibitory action on glucose-induced insulin release in intact Wistar islets, whereas no effect was recorded for either parameter in intact GK islets. In contrast, acarbose inhibited the enzyme activity equally in islet homogenates from both GK and Wistar rats, showing that the catalytic activity of the enzyme itself in disrupted cells was unaffected. We propose that dysfunction of the islet lysosomal/vacuolar system is an important defect impairing the transduction mechanisms for glucose-induced insulin release in the GK rat.
  •  
47.
  • Salehi, S Albert, et al. (författare)
  • Total parenteral nutrition modulates hormone release by stimulating expression and activity of inducible nitric oxide synthase in rat pancreatic islets
  • 2001
  • Ingår i: Endocrine. - 1355-008X. ; 16:2, s. 97-104
  • Tidskriftsartikel (refereegranskat)abstract
    • The expression and activities of constitutive nitric oxide synthase (cNOS) and inducible nitric oxide synthase (iNOS) in relation to insulin and glucagon secretory mechanisms were investigated in islets isolated from rats subjected to total parenteral nutrition (TPN) for 10 d. TPN is known to result in significantly increased levels of plasma lipids during the infusion time. In comparison with islets from freely fed control rats, islets taken from TPN rats at d 10 displayed a marked decrease in glucose-stimulated insulin release (4.65 +/- 0.45 ng/[islet x h] vs 10.25 +/- 0.65 for controls) (p < 0.001) accompanied by a strong iNOS activity (18.3 +/- 1.1 pmol of NO/[min x mg of protein]) and a modestly reduced cNOS activity (11.3 +/- 3.2 pmol of NO/[min x mg of protein] vs 17.7 +/- 1.7 for controls) (p < 0.01). Similarly, Western blots showed the expression of iNOS protein as well as a significant reduction in cNOS protein in islets from TPN-treated rats. The enhanced NO production, which is known to inhibit glucose-stimulated insulin release, was manifested as a strong increase in the cyclic guanosine 5'-monophosphate content in the islets of TPN-treated rats (1586 +/- 40 amol/islet vs 695 +/- 64 [p < 0.001] for controls). Moreover, the content of cyclic adenosine monophosphate (cAMP) was greatly increased in the TPN islets (80.4 +/- 2.1 fmol/islet vs 42.6 +/- 2.6 [p < 0.001] for controls). The decrease in glucose-stimulated insulin release was associated with an increase in the activity of the secretory pathway regulated by the cAMP system in the islets of TPN-treated rats, since the release of insulin stimulated by the phosphodiesterase inhibitor isobutylmethylxanthine was greatly increased both in vivo after iv injection and after in vitro incubation of isolated islets. By contrast, the release of glucagon was clearly reduced in islets taken from TPN-treated rats (33.5 +/- 1.5 pg/[islet x h] vs 45.5 +/- 2.2 for controls) (p < 0.01) when islets were incubated at low glucose (1.0 mmol/L). The data show that long-term TPN treatment in rats brings about impairment of glucose-stimulated insulin release, that might be explained by iNOS expression and a marked iNOS-derived NO production in the beta-cells. The release of glucagon, on the other hand, is probably decreased by a direct "nutrient effect" of the enhanced plasma lipids. The results also suggest that the islets of TPN-treated rats have developed compensatory insulin secretory mechanisms by increasing the activity of their beta-cell cAMP system.
  •  
48.
  • Silverpil, Elin, 1978, et al. (författare)
  • Negative feedback on IL-23 exerted by IL-17A during pulmonary inflammation
  • 2013
  • Ingår i: Innate Immunity. - : SAGE Publications. - 1753-4259 .- 1753-4267. ; 19:5, s. 479-492
  • Tidskriftsartikel (refereegranskat)abstract
    • It is now established that IL-17 has a broad pro-inflammatory potential in mammalian host defense, in inflammatory disease and in autoimmunity, whereas little is known about its anti-inflammatory potential and inhibitory feedback mechanisms. Here, we examined whether IL-17A can inhibit the extracellular release of IL-23 protein, the upstream regulator of IL-17A producing lymphocyte subsets, that is released from macrophages during pulmonary inflammation. We characterized the effect of IL-17A on IL-23 release in several models of pulmonary inflammation, evaluated the presence of IL-17 receptor A (RA) and C (RC) on human alveolar macrophages and assessed the role of the Rho family GTPase Rac1 as a mediator of the effect of IL-17A on the release of IL-23 protein. In a model of sepsis-induced pneumonia, intravenous exposure to Staphylococcus aureus caused higher IL-23 protein concentrations in cell-free bronchoalveolar lavage (BAL) samples from IL-17A knockout (KO) mice, compared with wild type (WT) control mice. In a model of Gram-negative airway infection, pre-treatment with a neutralizing anti-IL-17A Ab and subsequent intranasal (i.n.) exposure to LPS caused higher IL-23 and IL-17A protein concentrations in BAL samples compared with mice exposed to LPS, but pre-treated with an isotype control Ab. Moreover, i.n. exposure with IL-17A protein per se decreased IL- 23 protein concentrations in BAL samples. We detected IL-17RA and IL-17RC on human alveolar macrophages, and found that invitro stimulation of these cells with IL-17A protein, after exposure to LPS, decreased IL-23 protein in conditioned medium, but not IL-23 p19 or p40 mRNA. This study indicates that IL-17A can partially inhibit the release of IL-23 protein during pulmonary inflammation, presumably by stimulating the here demonstrated receptor units IL-17RA and IL-17RC on alveolar macrophages. Hypothetically, the demonstrated mechanism may serve as negative feedback to protect from excessive IL-17A signaling and to control antibacterial host defense once it is activated.
  •  
49.
  •  
50.
  • Sjöblom, A., et al. (författare)
  • Pre-oxygenation using high-flow nasal oxygen vs. tight facemask during rapid sequence induction
  • 2021
  • Ingår i: Anaesthesia. - : WILEY. - 0003-2409 .- 1365-2044. ; 76:9, s. 1176-1183
  • Tidskriftsartikel (refereegranskat)abstract
    • Pre-oxygenation using high-flow nasal oxygen can decrease the risk of desaturation during rapid sequence induction in patients undergoing emergency surgery. Previous studies were single-centre and often in limited settings. This randomised, international, multicentre trial compared high-flow nasal oxygen with standard facemask pre-oxygenation for rapid sequence induction in emergency surgery at all hours of the day and night. A total of 350 adult patients from six centres in Sweden and one in Switzerland undergoing emergency surgery where rapid sequence induction was required were included and randomly allocated to pre-oxygenation with 100% oxygen using high-flow nasal oxygen or a standard tight-fitting facemask. The primary outcome was the number of patients developing oxygen saturations <93% from the start of pre-oxygenation until 1 min after tracheal intubation. Data from 349 of 350 patients who entered the study were analysed (174 in the high-flow nasal oxygen group and 175 in the facemask group). No difference was detected in the number of patients desaturating <93%, five (2.9%) vs. six (3.4%) patients in the high-flow nasal oxygen and facemask group, respectively (p = 0.77). The risk of desaturation was not increased during on-call hours. No difference was seen in end-tidal carbon dioxide levels in the first breath after tracheal intubation or in the number of patients with signs of regurgitation between groups. These results confirm that high-flow nasal oxygen maintains adequate oxygen levels during pre-oxygenation for rapid sequence induction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 55
Typ av publikation
tidskriftsartikel (43)
konferensbidrag (9)
annan publikation (2)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (43)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Henningsson, A. (9)
Henningsson, S (9)
Henningsson, Ragnar (8)
Lundquist, Ingmar (8)
Siegbahn, H. (8)
Salehi, S Albert (6)
visa fler...
Eriksson, E (6)
Hagfeldt, Anders (5)
Henningsson, Susanne ... (5)
Westberg, Lars, 1973 (5)
Fredrikson, Mats (4)
Salehi, A. (4)
Efendic, S (4)
Furmark, Tomas (4)
Faria, Vanda (4)
Rensmo, H. (4)
Sandell, A. (4)
Westberg, L (4)
Åhs, Fredrik (4)
Bani, M (4)
OSTENSON, CG (3)
Lindquist, S. E. (3)
Alm, Per (3)
Zettergren, Anna, 19 ... (3)
Appel, L. (3)
Linnman, Claes (3)
Lundquist, I (3)
Melke, Jonas, 1971 (3)
Matussek, A (3)
Jonsson Henningsson, ... (3)
Wilhelmsson, Peter (2)
Rensmo, Håkan (2)
Jonsson, Lina, 1982 (2)
Landen, M (2)
Lager, Malin (2)
Efendic, Suad (2)
NORDGREN, J (2)
Guo, J.-H. (2)
Rosmond, R (2)
Holm, G (2)
Lichtenstein, P. (2)
Gjertsson, Inger, 19 ... (2)
Alm, P (2)
Jirholt, Pernilla, 1 ... (2)
Augustsson, A (2)
Henningsson, Louise, ... (2)
Hedberg, M (2)
Baghaei, F (2)
Bettica, P (2)
Merlo Pich, E (2)
visa färre...
Lärosäte
Karolinska Institutet (21)
Uppsala universitet (15)
Lunds universitet (11)
Göteborgs universitet (8)
Linköpings universitet (6)
Stockholms universitet (3)
visa fler...
Umeå universitet (2)
Kungliga Tekniska Högskolan (2)
Mälardalens universitet (2)
Mittuniversitetet (2)
Örebro universitet (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (49)
Odefinierat språk (6)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (24)
Samhällsvetenskap (8)
Naturvetenskap (4)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy