SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heslegrave A) "

Sökning: WFRF:(Heslegrave A)

  • Resultat 11-20 av 92
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Alagaratnam, J., et al. (författare)
  • No evidence of neuronal damage as measured by neurofilament light chain in a HIV cure study utilising a kick-and-kill approach
  • 2021
  • Ingår i: Journal of Virus Eradication. - : Elsevier BV. - 2055-6640. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: HIV-remission strategies including kick-and-kill could induce viral transcription and immune activation in the central nervous system, potentially causing neuronal injury. We investigated the impact of kick-and-kill on plasma neurofilament light (NfL), a marker of neuro-axonal injury, in RIVER trial participants commencing antiretroviral treatment (ART) during primary infection and randomly allocated to ART-alone or kick-and-kill (ART + vaccination + vorinostat (ART + V + V)). Design: Sub-study measuring serial plasma NfL concentrations. Methods: Plasma NfL (using Simoa digital immunoassay), plasma HIV-1 RNA (using single-copy assay) and total HIV-1 DNA (using quantitative polymerase chain reaction in peripheral CD4(+) T-cells) were measured at randomisation (following >= 22 weeks ART), week 12 (on final intervention day in ART + V + V) and week 18 post randomisation. HIV-specific T-cells were quantified by intracellular cytokine staining at randomisation and week 12. Differences in plasma NfL longitudinally and by study arm were analysed using mixed models and Student's t-test. Associations with plasma NfL were assessed using linear regression and rank statistics. Results: At randomisation, 58 male participants had median age 32 years and CD4(+) count 696 cells/mu L. No significant difference in plasma NfL was seen longitudinally and by study arm, with median plasma NfL (pg/mL) in ART-only vs ART + V + V: 7.4 vs 6.4, p = 0.16 (randomisation), 8.0 vs 6.9, p = 0.22 (week 12) and 7.1 vs 6.8, p = 0.74 (week 18). Plasma NfL did not significantly correlate with plasma HIV-1 RNA and total HIV-1 DNA concentration in peripheral CD4(+) T-cells at any timepoint. While higher HIV-specific T-cell responses were seen at week 12 in ART + V + V, there were no significant correlations with plasma NfL. In multivariate analysis, higher plasma NfL was associated with older age, higher CD8(+) count and lower body mass index. Conclusions: Despite evidence of vaccine-induced HIV-specific T-cell responses, we observed no evidence of increased neuro-axonal injury using plasma NfL as a biomarker up to 18 weeks following kick-and-kill, compared with ART-only.
  •  
12.
  • Garland, P., et al. (författare)
  • Haemoglobin causes neuronal damage in vivo which is preventable by haptoglobin
  • 2020
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • After subarachnoid haemorrhage, prolonged exposure to toxic extracellular haemoglobin occurs in the brain. Here, we investigate the role of haemoglobin neurotoxicity in vivo and its prevention. In humans after subarachnoid haemorrhage, haemoglobin in cerebrospinal fluid was associated with neurofilament light chain, a marker of neuronal damage. Most haemoglobin was not complexed with haptoglobin, an endogenous haemoglobin scavenger present at very low concentration in the brain. Exogenously added haptoglobin bound most uncomplexed haemoglobin, in the first 2 weeks after human subarachnoid haemorrhage, indicating a wide therapeutic window. In mice, the behavioural, vascular, cellular and molecular changes seen after human subarachnoid haemorrhage were recapitulated by modelling a single aspect of subarachnoid haemorrhage: prolonged intrathecal exposure to haemoglobin. Haemoglobin-induced behavioural deficits and astrocytic, microglial and synaptic changes were attenuated by haptoglobin. Haptoglobin treatment did not attenuate large-vessel vasospasm, yet improved clinical outcome by restricting diffusion of haemoglobin into the parenchyma and reducing small-vessel vasospasm. In summary, haemoglobin toxicity is of clinical importance and preventable by haptoglobin, independent of large-vessel vasospasm.
  •  
13.
  • Graham, N., et al. (författare)
  • Alzheimer's disease marker phospho-tau181 is not elevated in the first year after moderate-to-severe TBI
  • 2024
  • Ingår i: Journal of Neurology Neurosurgery and Psychiatry. - 0022-3050. ; 95:4, s. 356-359
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundTraumatic brain injury (TBI) is associated with the tauopathies Alzheimer's disease and chronic traumatic encephalopathy. Advanced immunoassays show significant elevations in plasma total tau (t-tau) early post-TBI, but concentrations subsequently normalise rapidly. Tau phosphorylated at serine-181 (p-tau181) is a well-validated Alzheimer's disease marker that could potentially seed progressive neurodegeneration. We tested whether post-traumatic p-tau181 concentrations are elevated and relate to progressive brain atrophy.MethodsPlasma p-tau181 and other post-traumatic biomarkers, including total-tau (t-tau), neurofilament light (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP), were assessed after moderate-to-severe TBI in the BIO-AX-TBI cohort (first sample mean 2.7 days, second sample within 10 days, then 6 weeks, 6 months and 12 months, n=42). Brain atrophy rates were assessed in aligned serial MRI (n=40). Concentrations were compared patients with and without Alzheimer's disease, with healthy controls.ResultsPlasma p-tau181 concentrations were significantly raised in patients with Alzheimer's disease but not after TBI, where concentrations were non-elevated, and remained stable over one year. P-tau181 after TBI was not predictive of brain atrophy rates in either grey or white matter. In contrast, substantial trauma-associated elevations in t-tau, NfL, GFAP and UCH-L1 were seen, with concentrations of NfL and t-tau predictive of brain atrophy rates.ConclusionsPlasma p-tau181 is not significantly elevated during the first year after moderate-to-severe TBI and levels do not relate to neuroimaging measures of neurodegeneration.
  •  
14.
  • Kagiava, A., et al. (författare)
  • Gene replacement therapy after neuropathy onset provides therapeutic benefit in a model of CMT1X
  • 2019
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 28:21, s. 3528-3542
  • Tidskriftsartikel (refereegranskat)abstract
    • X-linked Charcot-Marie-Tooth disease (CMT1X), one of the commonest forms of inherited demyelinating neuropathy, results from GJB1 gene mutations causing loss of function of the gap junction protein connexin32 (Cx32). The aim of this study was to examine whether delayed gene replacement therapy after the onset of peripheral neuropathy can provide a therapeutic benefit in the Gjb1-null/Cx32 knockout model of CMT1X. After delivery of the LV-Mpz.GJB1 lentiviral vector by a single lumbar intrathecal injection into 6-month-old Gjb1-null mice, we confirmed expression of Cx32 in lumbar roots and sciatic nerves correctly localized at the paranodal myelin areas. Gjb1-null mice treated with LV-Mpz.GJB1 compared with LV-Mpz.Egfp (mock) vector at the age of 6 months showed improved motor performance at 8 and 10 months. Furthermore, treated mice showed increased sciatic nerve conduction velocities, improvement of myelination and reduced inflammation in lumbar roots and peripheral nerves at 10 months of age, along with enhanced quadriceps muscle innervation. Plasma neurofilament light (NEFL) levels, a clinically relevant biomarker, were also ameliorated in fully treated mice. Intrathecal gene delivery after the onset of peripheral neuropathy offers a significant therapeutic benefit in this disease model, providing a proof of principle for treating patients with CMT1X at different ages.
  •  
15.
  • Kapoor, M., et al. (författare)
  • Association of plasma neurofilament light chain with disease activity in chronic inflammatory demyelinating polyradiculoneuropathy
  • 2022
  • Ingår i: European Journal of Neurology. - : Wiley. - 1351-5101 .- 1468-1331. ; 29:11, s. 3347-3357
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose This study was undertaken to explore associations between plasma neurofilament light chain (pNfL) concentration (pg/ml) and disease activity in patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and examine the usefulness of pNfL concentrations in determining disease remission. Methods We examined pNfL concentrations in treatment-naive CIDP patients (n = 10) before and after intravenous immunoglobulin (IVIg) induction treatment, in pNfL concentrations in patients on maintenance IVIg treatment who had stable (n = 15) versus unstable disease (n = 9), and in clinically stable IVIg-treated patients (n = 10) in whom we suspended IVIg to determine disease activity and ongoing need for maintenance IVIg. pNfL concentrations in an age-matched healthy control group were measured for comparison. Results Among treatment-naive patients, pNfL concentration was higher in patients before IVIg treatment than healthy controls and subsequently reduced to be comparable to control group values after IVIg induction. Among CIDP patients on IVIg treatment, pNfL concentration was significantly higher in unstable patients than stable patients. A pNFL concentration > 16.6 pg/ml distinguished unstable treated CIDP from stable treated CIDP (sensitivity = 86.7%, specificity = 66.7%, area under receiver operating characteristic curve = 0.73). Among the treatment withdrawal group, there was a statistically significant correlation between pNfL concentration at time of IVIg withdrawal and the likelihood of relapse (r = 0.72, p < 0.05), suggesting an association of higher pNfL concentration with active disease. Conclusions pNfL concentrations may be a sensitive, clinically useful biomarker in assessing subclinical disease activity.
  •  
16.
  • Schiza, N., et al. (författare)
  • Gene replacement therapy in a model of Charcot-Marie-Tooth 4C neuropathy
  • 2019
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 142, s. 1227-1241
  • Tidskriftsartikel (refereegranskat)abstract
    • Charcot-Marie-Tooth disease type 4C is the most common recessively inherited demyelinating neuropathy that results from loss of function mutations in the SH3TC2 gene. Sh3tc2(-/-) mice represent a well characterized disease model developing early onset progressive peripheral neuropathy with hypo- and demyelination, slowing of nerve conduction velocities and disturbed nodal architecture. The aim of this project was to develop a gene replacement therapy for treating Charcot-Marie-Tooth disease type 4C to rescue the phenotype of the Sh3tc2(-/-) mouse model. We generated a lentiviral vector LV-Mpz.SH3TC2.myc to drive expression of the human SH3TC2 cDNA under the control of the Mpz promoter specifically in myelinating Schwann cells. The vector was delivered into 3-week-old Sh3tc2(-/-) mice by lumbar intrathecal injection and gene expression was assessed 4-8 weeks after injection. Immunofluorescence analysis showed presence of myc-tagged human SH3TC2 in sciatic nerves and lumbar roots in the perinuclear cytoplasm of a subset of Schwann cells, in a dotted pattern co-localizing with physiologically interacting protein Rab11. Quantitative PCR analysis confirmed SH3TC2 mRNA expression in different peripheral nervous system tissues. A treatment trial was initiated in 3 weeks old randomized Sh3tc2(-/-) littermate mice which received either the full or mock (LV-Mpz.Egfp) vector. Behavioural analysis 8 weeks after injection showed improved motor performance in rotarod and foot grip tests in treated Sh3tc2(-/-) mice compared to mock vector-treated animals. Moreover, motor nerve conduction velocities were increased in treated Sh3tc2(-/-) mice. On a structural level, morphological analysis revealed significant improvement in g-ratios, myelin thickness, and ratios of demyelinated fibres in lumbar roots and sciatic nerves of treated Sh3tc2(-/-) mice. Finally, treated mice also showed improved nodal molecular architecture and reduction of blood neurofilament light levels, a clinically relevant biomarker for axonal injury/degeneration. This study provides a proof of principle for viral gene replacement therapy targeted to Schwann cells to treat Charcot-Marie-Tooth disease type 4C and potentially other similar demyelinating inherited neuropathies.
  •  
17.
  • Stavrou, M., et al. (författare)
  • A translatable RNAi-driven gene therapy silences PMP22/Pmp22 genes and improves neuropathy in CMT1A mice
  • 2022
  • Ingår i: Journal of Clinical Investigation. - : American Society for Clinical Investigation. - 0021-9738 .- 1558-8238. ; 132:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Charcot-Marie-Tooth disease type 1A (CMT1A), the most common inherited demyelinating peripheral neuropathy, is caused by PMP22 gene duplication. Overexpression of WT PMP22 in Schwann cells destabilizes the myelin sheath, leading to demyelination and ultimately to secondary axonal loss and disability. No treatments currently exist that modify the disease course. The most direct route to CMT1A therapy will involve reducing PMP22 to normal levels. To accomplish this, we developed a gene therapy strategy to reduce PMP22 using artificial miRNAs targeting human PMP22 and mouse Pmp22 mRNAs. Our lead therapeutic miRNA, miR871, was packaged into an adeno-associated virus 9 (AAV9) vector and delivered by lumbar intrathecal injection into C61-het mice, a model of CMT1A. AAV9-miR871 efficiently transduced Schwann cells in C61-het peripheral nerves and reduced human and mouse PMP22 mRNA and protein levels. Treatment at early and late stages of the disease significantly improved multiple functional outcome measures and nerve conduction velocities. Furthermore, myelin pathology in lumbar roots and femoral motor nerves was ameliorated. The treated mice also showed reductions in circulating biomarkers of CMT1A. Taken together, our data demonstrate that AAV9-miR871-driven silencing of PMP22 rescues a CMT1A model and provides proof of principle for treating CMT1A using a translatable gene therapy approach.
  •  
18.
  • Chouliaras, L., et al. (författare)
  • Differential levels of plasma biomarkers of neurodegeneration in Lewy body dementia, Alzheimer's disease, frontotemporal dementia and progressive supranuclear palsy
  • 2022
  • Ingår i: Journal of Neurology Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 93:6, s. 651-658
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives This longitudinal study compared emerging plasma biomarkers for neurodegenerative disease between controls, patients with Alzheimer's disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). Methods Plasma phosphorylated tau at threonine-181 (p-tau181), amyloid beta (Alpha beta)42, A beta 40, neurofilament light (NfL) and glial fibrillar acidic protein (GFAP) were measured using highly sensitive single molecule immunoassays (Simoa) in a multicentre cohort of 300 participants (controls=73, amyloid positive mild cognitive impairment (MCI+) and AD dementia=63, LBD=117, FTD=28, PSP=19). LBD participants had known positron emission tomography (PET)-A beta status. Results P-tau181 was elevated in MCI+AD compared with all other groups. A beta 42/40 was lower in MCI+AD compared with controls and FTD. NfL was elevated in all dementias compared with controls while GFAP was elevated in MCI+AD and LBD. Plasma biomarkers could classify between MCI+AD and controls, FTD and PSP with high accuracy but showed limited ability in differentiating MCI+AD from LBD. No differences were detected in the levels of plasma biomarkers when comparing PET-A beta positive and negative LBD. P-tau181, NfL and GFAP were associated with baseline and longitudinal cognitive decline in a disease specific pattern. Conclusion This large study shows the role of plasma biomarkers in differentiating patients with different dementias, and at monitoring longitudinal change. We confirm that p-tau181 is elevated in MCI+AD, versus controls, FTD and PSP, but is less accurate in the classification between MCI+AD and LBD or detecting amyloid brain pathology in LBD. NfL was elevated in all dementia groups, while GFAP was elevated in MCI+AD and LBD.
  •  
19.
  • Deming, Y., et al. (författare)
  • The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer's disease risk
  • 2019
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 11:505
  • Tidskriftsartikel (refereegranskat)abstract
    • Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) has been associated with Alzheimer's disease (AD). TREM2 plays a critical role in microglial activation, survival, and phagocytosis; however, the pathophysiological role of sTREM2 in AD is not well understood. Understanding the role of sTREM2 in AD may reveal new pathological mechanisms and lead to the identification of therapeutic targets. We performed a genome-wide association study (GWAS) to identify genetic modifiers of CSF sTREM2 obtained from the Alzheimer's Disease Neuroimaging Initiative. Common variants in the membrane-spanning 4-domains subfamily A (MS4A) gene region were associated with CSF sTREM2 concentrations (rs1582763; P = 1.15 x 10(-15)); this was replicated in independent datasets. The variants associated with increased CSF sTREM2 concentrations were associated with reduced AD risk and delayed age at onset of disease. The single-nucleotide polymorphism rs1582763 modified expression of the MS4A4A and MS4A6A genes in multiple tissues, suggesting that one or both of these genes are important for modulating sTREM2 production. Using human macrophages as a proxy for microglia, we found that MS4A4A and TREM2 colocalized on lipid rafts at the plasma membrane, that sTREM2 increased with MS4A4A overexpression, and that silencing of MS4A4A reduced sTREM2 production. These genetic, molecular, and cellular findings suggest that MS4A4A modulates sTREM2. These findings also provide a mechanistic explanation for the original GWAS signal in the MS4A locus for AD risk and indicate that TREM2 may be involved in AD pathogenesis not only in TREM2 risk-variant carriers but also in those with sporadic disease.
  •  
20.
  • Ehler, J., et al. (författare)
  • The prognostic value of neurofilament levels in patients with sepsis-associated encephalopathy - A prospective, pilot observational study
  • 2019
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis-associated encephalopathy (SAE) contributes to mortality and neurocognitive impairment of sepsis patients. Neurofilament (Nf) light (NfL) and heavy (NfH) chain levels as biomarkers for neuroaxonal injury were not evaluated in cerebrospinal fluid (CSF) and plasma of patients with sepsis-associated encephalopathy (SAE) before. We conducted a prospective, pilot observational study including 20 patients with septic shock and five patients without sepsis serving as controls. The assessment of SAE comprised a neuropsychiatric examination, electroencephalography (EEG), magnetic resonance imaging (MRI) and delirium screening methods including the confusion assessment method for the ICU (CAM-ICU) and the intensive care delirium screening checklist (ICDSC). CSF Nf measurements in sepsis patients and longitudinal plasma Nf measurements in all participants were performed on days 1, 3 and 7 after study inclusion. Plasma NfL levels increased in sepsis patients over time (p = 0.0063) and remained stable in patients without sepsis. Plasma NfL values were significantly higher in patients with SAE (p = 0.011), significantly correlated with the severity of SAE represented by ICDSC values (R = 0.534, p = 0.022) and correlated with a poorer functional outcome after 100 days (R = -0.535, p = 0.0003). High levels of CSF Nf were measured in SAE patients. CSF NfL levels were higher in non-survivors (p = 0.012) compared with survivors and correlated with days until death (R = -0.932, p<0.0001) and functional outcome after 100 days (R = -0.749, p<0.0001). The present study showed for the first time that Nf levels provide complementary prognostic information in SAE patients indicating a higher chance of death and poorer functional/cognitive outcome in survivors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 92

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy