SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hofman Andrea) "

Search: WFRF:(Hofman Andrea)

  • Result 11-20 of 34
Sort/group result
   
EnumerationReferenceCoverFind
11.
  •  
12.
  • Do, Ron, et al. (author)
  • Common variants associated with plasma triglycerides and risk for coronary artery disease
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:11, s. 1345-
  • Journal article (peer-reviewed)abstract
    • Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 x 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
  •  
13.
  • Elks, Cathy E, et al. (author)
  • Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:12, s. 1077-85
  • Journal article (peer-reviewed)abstract
    • To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10⁻⁶⁰) and 9q31.2 (P = 2.2 × 10⁻³³), we identified 30 new menarche loci (all P < 5 × 10⁻⁸) and found suggestive evidence for a further 10 loci (P < 1.9 × 10⁻⁶). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing.
  •  
14.
  • Estrada, Karol, et al. (author)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Journal article (peer-reviewed)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
15.
  • Ganna, Andrea, 1985-, et al. (author)
  • Genetic determinants of mortality : Can findings from genome-wide association studies explain variation in human mortality?
  • 2013
  • In: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 132:5, s. 553-561
  • Journal article (peer-reviewed)abstract
    • Twin studies have estimated the heritability of longevity to be approximately 20-30 %. Genome-wide association studies (GWAS) have revealed a large number of determinants of morbidity, but so far, no new polymorphisms have been discovered to be associated with longevity per se in GWAS. We aim to determine whether the genetic architecture of mortality can be explained by single nucleotide polymorphisms (SNPs) associated with common traits and diseases related to mortality. By extensive quality control of published GWAS we created a genetic score from 707 common SNPs associated with 125 diseases or risk factors related with overall mortality. We prospectively studied the association of the genetic score with: (1) time-to-death; (2) incidence of the first of nine major diseases (coronary heart disease, stroke, heart failure, diabetes, dementia, lung, breast, colon and prostate cancers) in two population-based cohorts of Dutch and Swedish individuals (N = 15,039; age range 47-99 years). During a median follow-up of 6.3 years (max 22.2 years), we observed 4,318 deaths and 2,132 incident disease events. The genetic score was significantly associated with time-to-death [hazard ratio (HR) per added risk allele = 1.003, P value = 0.006; HR 4th vs. 1st quartile = 1.103]. The association between the genetic score and incidence of major diseases was stronger (HR per added risk allele = 1.004, P value = 0.002; HR 4th vs. 1st quartile = 1.160). Associations were stronger for individuals dying at older ages. Our findings are compatible with the view of mortality as a complex and highly polygenetic trait, not easily explainable by common genetic variants related to diseases and physiological traits.
  •  
16.
  •  
17.
  • Hop, Paul J., et al. (author)
  • Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS
  • 2022
  • In: Science Translational Medicine. - : American Association for the Advancement of Science. - 1946-6234 .- 1946-6242. ; 14:633
  • Journal article (peer-reviewed)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.
  •  
18.
  • Hruby, Adela, et al. (author)
  • Higher Magnesium Intake Is Associated with Lower Fasting Glucose and Insulin, with No Evidence of Interaction with Select Genetic Loci, in a Meta-Analysis of 15 CHARGE Consortium Studies
  • 2013
  • In: Journal of Nutrition. - : Elsevier BV. - 0022-3166 .- 1541-6100. ; 143:3, s. 345-353
  • Journal article (peer-reviewed)abstract
    • Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (In-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [beta = -0.009 mmol/L (95% CI: -0.013, -0.005), P< 0.0001] and insulin (-0.020 In-pmo/L (95% CI: -0.024, -0.017), P< 0.0001]. No magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P= 0.03) with glucose, and rs11558471 in SLC30A8and rs3740393 near CNNM2showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted. J. Nutr. 143: 345-353, 2013.
  •  
19.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
20.
  • Lagou, Vasiliki, et al. (author)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 34
Type of publication
journal article (31)
research review (2)
Type of content
peer-reviewed (33)
Author/Editor
Hofman, Albert (27)
Uitterlinden, André ... (22)
Harris, Tamara B (15)
Gudnason, Vilmundur (14)
Rivadeneira, Fernand ... (13)
Ridker, Paul M. (12)
show more...
Chasman, Daniel I. (12)
van Duijn, Cornelia ... (12)
Metspalu, Andres (12)
Boerwinkle, Eric (12)
Raitakari, Olli (12)
Hayward, Caroline (11)
Franco, Oscar H. (11)
Cupples, L. Adrienne (11)
Ferrucci, Luigi (11)
Salomaa, Veikko (10)
Rudan, Igor (10)
Deloukas, Panos (10)
Wareham, Nicholas J. (10)
McCarthy, Mark I (10)
Stefansson, Kari (10)
Rotter, Jerome I. (10)
Loos, Ruth J F (10)
Esko, Tõnu (10)
Vollenweider, Peter (10)
Soranzo, Nicole (9)
Thorsteinsdottir, Un ... (9)
Barroso, Ines (9)
Lehtimaki, Terho (9)
Liu, Yongmei (9)
Psaty, Bruce M (9)
Boehm, Bernhard O. (9)
Bandinelli, Stefania (9)
Viikari, Jorma (8)
Franks, Paul W. (8)
Hu, Frank B. (8)
Amin, Najaf (8)
Langenberg, Claudia (8)
Pedersen, Nancy L (8)
Hamsten, Anders (8)
Lehtimäki, Terho (8)
Tuomilehto, Jaakko (8)
Mangino, Massimo (8)
Gieger, Christian (8)
Boomsma, Dorret I. (8)
Sonestedt, Emily (8)
Wilson, James F. (8)
Zillikens, M. Carola (8)
Polasek, Ozren (8)
Borecki, Ingrid B. (8)
show less...
University
Uppsala University (24)
Lund University (23)
Umeå University (19)
Karolinska Institutet (19)
University of Gothenburg (12)
Luleå University of Technology (4)
show more...
Swedish University of Agricultural Sciences (3)
Stockholm University (2)
Linköping University (2)
Högskolan Dalarna (1)
show less...
Language
English (34)
Research subject (UKÄ/SCB)
Medical and Health Sciences (30)
Natural sciences (5)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view