SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hong Mun Gwan) "

Sökning: WFRF:(Hong Mun Gwan)

  • Resultat 11-20 av 56
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Cederroth, Christopher R., et al. (författare)
  • Screening for Circulating Inflammatory Proteins Does Not Reveal Plasma Biomarkers of Constant Tinnitus
  • 2023
  • Ingår i: Journal of the Association for Research in Otolaryngology. - : Springer Nature. - 1525-3961 .- 1438-7573. ; 24:6, s. 593-606
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objective: Tinnitus would benefit from an objective biomarker. The goal of this study is to identify plasma biomarkers of constant and chronic tinnitus among selected circulating inflammatory proteins. Methods: A case–control retrospective study on 548 cases with constant tinnitus and 548 matched controls from the Swedish Tinnitus Outreach Project (STOP), whose plasma samples were examined using Olink’s Inflammatory panel. Replication and meta-analysis were performed using the same method on samples from the TwinsUK cohort. Participants from LifeGene, whose blood was collected in Stockholm and Umeå, were recruited to STOP for a tinnitus subtyping study. An age and sex matching was performed at the individual level. TwinsUK participants (n = 928) were selected based on self-reported tinnitus status over 2 to 10 years. Primary outcomes include normalized levels for 96 circulating proteins, which were used as an index test. No reference standard was available in this study. Results: After adjustment for age, sex, BMI, smoking, hearing loss, and laboratory site, the top proteins identified were FGF-21, MCP4, GDNF, CXCL9, and MCP-1; however, these were no longer statistically significant after correction for multiple testing. Stratification by sex did not yield any significant associations. Similarly, associations with hearing loss or other tinnitus-related comorbidities such as stress, anxiety, depression, hyperacusis, temporomandibular joint disorders, and headache did not yield any significant associations. Analysis in the TwinsUK failed in replicating the top candidates. Meta-analysis of STOP and TwinsUK did not reveal any significant association. Using elastic net regularization, models exhibited poor predictive capacity tinnitus based on inflammatory markers [sensitivity = 0.52 (95% CI 0.47–0.57), specificity = 0.53 (0.48–0.58), positive predictive value = 0.52 (0.47–0.56), negative predictive values = 0.53 (0.49–0.58), and AUC = 0.53 (0.49–0.56)]. Discussion: Our results did not identify significant associations of the selected inflammatory proteins with constant tinnitus. Future studies examining longitudinal relations among those with more severe tinnitus and using more recent expanded proteomics platforms and sampling of cerebrospinal fluid could increase the likelihood of identifying relevant molecular biomarkers.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Dawed, Adem Y., et al. (författare)
  • Pharmacogenomics of GLP-1 receptor agonists : a genome- wide analysis of observational data and large randomised controlled trials
  • 2023
  • Ingår i: The Lancet Diabetes and Endocrinology. - : ELSEVIER SCIENCE INC. - 2213-8587 .- 2213-8595. ; 11:1, s. 33-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In the treatment of type 2 diabetes, GLP-1 receptor agonists lower blood glucose concentrations, body weight, and have cardiovascular benefits. The efficacy and side effects of GLP-1 receptor agonists vary between people. Human pharmacogenomic studies of this inter-individual variation can provide both biological insight into drug action and provide biomarkers to inform clinical decision making. We therefore aimed to identify genetic variants associated with glycaemic response to GLP-1 receptor agonist treatment. Methods:In this genome-wide analysis we included adults (aged & GE;18 years) with type 2 diabetes treated with GLP-1 receptor agonists with baseline HbA1c of 7% or more (53 mmol/mol) from four prospective observational cohorts (DIRECT, PRIBA, PROMASTER, and GoDARTS) and two randomised clinical trials (HARMONY phase 3 and AWARD). The primary endpoint was HbA1c reduction at 6 months after starting GLP-1 receptor agonists. We evaluated variants in GLP1R, then did a genome-wide association study and gene-based burden tests. Findings:4571 adults were included in our analysis, of these, 3339 (73%) were White European, 449 (10%) Hispanic, 312 (7%) American Indian or Alaskan Native, and 471 (10%) were other, and around 2140 (47%) of the participants were women. Variation in HbA1c reduction with GLP-1 receptor agonists treatment was associated with rs6923761G & RARR;A (Gly168Ser) in the GLP1R (0.08% [95% CI 0.04-0.12] or 0.9 mmol/mol lower reduction in HbA1c per serine, p=6.0 x 10-5) and low frequency variants in ARRB1 (optimal sequence kernel association test p=6.7 x 10-8), largely driven by rs140226575G & RARR;A (Thr370Met; 0.25% [SE 0.06] or 2.7 mmol/mol [SE 0.7] greater HbA1c reduction per methionine, p=5.2 x 10-6). A similar effect size for the ARRB1 Thr370Met was seen in Hispanic and American Indian or Alaska Native populations who have a higher frequency of this variant (6-11%) than in White European populations. Combining these two genes identified 4% of the population who had a 30% greater reduction in HbA1c than the 9% of the population with the worse response. Interpretation:This genome-wide pharmacogenomic study of GLP-1 receptor agonists provides novel biological and clinical insights. Clinically, when genotype is routinely available at the point of prescribing, individuals with ARRB1 variants might benefit from earlier initiation of GLP-1 receptor agonists.
  •  
16.
  • Dodig-Crnkovic, Tea, et al. (författare)
  • Facets of individual-specific health signatures determined from longitudinal plasma proteome profiling
  • 2020
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 57
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Precision medicine approaches aim to tackle diseases on an individual level through molecular profiling. Despite the growing knowledge about diseases and the reported diversity of molecular phenotypes, the descriptions of human health on an individual level have been far less elaborate. Methods: To provide insights into the longitudinal protein signatures of well-being, we profiled blood plasma collected over one year from 101 clinically healthy individuals using multiplexed antibody assays. After applying an antibody validation scheme, we utilized > 700 protein profiles for in-depth analyses of the individuals' short-term health trajectories. Findings: We found signatures of circulating proteomes to be highly individual-specific. Considering technical and longitudinal variability, we observed that 49% of the protein profiles were stable over one year. We also identified eight networks of proteins in which 11-242 proteins covaried over time. For each participant, there were unique protein profiles of which some could be explained by associations to genetic variants. Interpretation: This observational and non-interventional study identifyed noticeable diversity among clinically healthy subjects, and facets of individual-specific signatures emerged by monitoring the variability of the circulating proteomes over time. To enable more personal hence precise assessments of health states, longitudinal profiling of circulating proteomes can provide a valuable component for precision medicine approaches.
  •  
17.
  • Dodig-Crnković, Tea (författare)
  • On the application and validation of multiplexed affinity assays
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proteins are essential macromolecules that carry out complex functions in human cells, tissues, and organs. They regulate a diverse set of biological processes and protect against pathogens. However, dysregulation or malformation of proteins can cause disease. By characterizing proteins in health and disease, we can gain insights into disease aetiology and identify druggable targets to treat disorders. By bringing protein discoveries from the research lab into clinical practice, protein assays have been and will continue to be important tools for enabling and improving medical decision-making. The work presented in this thesis concerns both exploratory and targeted affinity-based assays applied for the study of proteins. High-throughput and multiplexed suspension bead arrays have been the primary technology for measuring proteins with antibodies in samples such as human blood. Identification and validation of protein-protein interactions that may provide novel insights into the druggable proteome have also been carried out. Throughout the projects, methods for validating the observations have been pursued and include replication in independent sample sets, as well as the assessment of antibody selectivity via other proteomics assays or orthogonal methods such as genetic associations. In Paper I, we used multiplexed exploratory antibody arrays comprising almost 1.500 affinity binders to study proteins that circulate in plasma. Here, the focus was to determine the longitudinal variability of proteins. We analysed samples from 101 clinically healthy individuals, collected each third month for one year. The protein data provided insights into inter-individual diversity and the unique molecular fingerprint of each participant. We found that 49% of the studied proteins were stable across one year, as these had low variability in each individual. Eight modules, each containing 11-242 proteins, were found to co-vary across one year. We also found genetic variations to influence 15 of the detected protein profiles and confirmed selected indications in an independent set of 3.000 subjects. In summary, we observed the existence of individual-specific protein profiles and found that short-term and continuous changes occurred in almost every participant. In Paper II, we investigated blood-derived serum and plasma to identify age-associated proteins. We started from a large set of exploratory antibody bead arrays to screen 156 individuals aged 50-92 years. We found protein profiles of the histidine-rich glycoprotein (HRG) to be significantly associated with age. This association was further corroborated by the analysis of >4.000 individuals from eight additional and independent sets of blood samples. We further validated the HRG protein profiles by sandwich assays and protein microarrays developed in-house. Comparing genetic data and HRG profiles obtained by two independent antibodies, we observed strong but inverse associations to the genetic variants for two anti-HRG antibodies. In Paper III, we applied multiplexed assays for the detection of autoantibodies against cancer-testis antigens (CTAs) in 133 non-small cell lung cancer (NSCLC) patients. We found reactivity against 29 unique CTAs exclusively in cases, compared to 57 matched controls with benign lung diseases. The presence of six CTAs was further confirmed in an independent set of 34 NSCLC cases. Analysis of longitudinal samples from seven patients demonstrated that the presence of CTA autoantibodies was stable over time for each of the individuals. In Paper IV, we developed a novel multiplexed sandwich-immunoassay for the detection of interaction partners to G-protein coupled receptors (GPCRs). This pharmaceutically important family of membrane proteins is believed to be regulated by another group of receptor activity-modulating proteins (RAMPs) by the formation of protein complexes. We studied cell lysates expressing combinations of 23 GPCRs with three RAMPs. We confirmed most of the previously reported interaction pairs and additionally found evidence for 15 new GPCR-RAMP complexes. All interactions were validated using epitope tags that were engineered onto the proteins. Selected complexes were further validated by in situ proximity ligation assays performed in cell membranes. In summary, the work included in this thesis describes the use of multiplexed affinity-based assays for research within plasma proteomics and the interrogation of protein complexes. The work highlights the method’s potential for the identification of circulating proteins that may aid and add to the current knowledge about human health and disease.
  •  
18.
  • Drobin, Kimi, et al. (författare)
  • Molecular Profiling for Predictors of Radiosensitivity in Patients with Breast or Head-and-Neck Cancer
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Nearly half of all cancers are treated with radiotherapy alone or in combination with other treatments, where damage to normal tissues is a limiting factor for the treatment. Radiotherapy-induced adverse health effects, mostly of importance for cancer patients with long-term survival, may appear during or long time after finishing radiotherapy and depending on the patient's radiosensitivity. Currently, there is no assay available that can reliably predict the individual's response to radiotherapy. We profiled two study sets from breast (n = 29) and head-and-neck cancer patients (n = 74) that included radiosensitive patients and matched radioresistant controls. We studied 55 single nucleotide polymorphisms (SNPs) in 33 genes by DNA genotyping and 130 circulating proteins by affinity-based plasma proteomics. In both study sets, we discovered several plasma proteins with the predictive power to find radiosensitive patients (adjusted p < 0.05) and validated the two most predictive proteins (THPO and STIM1) by sandwich immunoassays. By integrating genotypic and proteomic data into an analysis model, it was found that the proteins CHIT1, PDGFB, PNKD, RP2, SERPINC1, SLC4A, STIM1, and THPO, as well as the VEGFA gene variant rs69947, predicted radiosensitivity of our breast cancer (AUC = 0.76) and head-and-neck cancer (AUC = 0.89) patients. In conclusion, circulating proteins and a SNP variant of VEGFA suggest that processes such as vascular growth capacity, immune response, DNA repair and oxidative stress/hypoxia may be involved in an individual's risk of experiencing radiation-induced toxicity.
  •  
19.
  •  
20.
  • Drobin, Kimi, et al. (författare)
  • Targeted Analysis of Serum Proteins Encoded at Known Inflammatory Bowel Disease Risk Loci
  • 2019
  • Ingår i: Inflammatory Bowel Diseases. - : Oxford University Press. - 1078-0998 .- 1536-4844. ; 25:2, s. 306-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Few studies have investigated the blood proteome of inflammatory bowel disease (IBD). We characterized the serum abundance of proteins encoded at 163 known IBD risk loci and tested these proteins for their biomarker discovery potential.Methods: Based on the Human Protein Atlas (HPA) antibody availability, 218 proteins from genes mapping at 163 IBD risk loci were selected. Targeted serum protein profiles from 49 Crohn's disease (CD) patients, 51 ulcerative colitis (UC) patients, and 50 sex- and age-matched healthy individuals were obtained using multiplexed antibody suspension bead array assays. Differences in relative serum abundance levels between disease groups and controls were examined. Replication was attempted for CD-UC comparisons (including disease subtypes) by including 64 additional patients (33 CD and 31 UC). Antibodies targeting a potentially novel risk protein were validated by paired antibodies, Western blot, immuno-capture mass spectrometry, and epitope mapping.Results: By univariate analysis, 13 proteins mostly related to neutrophil, T-cell, and B-cell activation and function were differentially expressed in IBD patients vs healthy controls, 3 in CD patients vs healthy controls and 2 in UC patients vs healthy controls (q < 0.01). Multivariate analyses further differentiated disease groups from healthy controls and CD subtypes from UC (P < 0.05). Extended characterization of an antibody targeting a novel, discriminative serum marker, the laccase (multicopper oxidoreductase) domain containing 1 (LACC1) protein, provided evidence for antibody on-target specificity.Conclusions: Using affinity proteomics, we identified a set of IBD-associated serum proteins encoded at IBD risk loci. These candidate proteins hold the potential to be exploited as diagnostic biomarkers of IBD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 56
Typ av publikation
tidskriftsartikel (50)
annan publikation (2)
doktorsavhandling (2)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (47)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Hong, Mun-Gwan (49)
Schwenk, Jochen M. (35)
Uhlén, Mathias (16)
Nilsson, Peter (11)
Forsström, Björn (7)
Pedersen, Nancy L (7)
visa fler...
Häussler, Ragna S. (7)
Franks, Paul (6)
Dodig-Crnkovic, Tea (6)
Edfors, Fredrik (6)
Pearson, Ewan (6)
Thomas, Cecilia Enge ... (6)
Blennow, Kaj, 1958 (5)
Wiklund, Fredrik (5)
Koivula, Robert (5)
Vinuela, Ana (5)
Sharma, Sapna (5)
Walker, Mark (5)
Dermitzakis, Emmanou ... (5)
Sharma, S. (4)
Mahajan, A. (4)
Odeberg, Jacob, Prof ... (4)
Bergström, Göran, 19 ... (4)
Walker, M (4)
Groop, L. (4)
Odeberg, Jacob (4)
Mari, A (4)
Vinuela, A (4)
Mahajan, Anubha (4)
Adamski, Jerzy (4)
Klintenberg, M (3)
Abdalla, M. (3)
Gummesson, Anders, 1 ... (3)
Fagerberg, Linn (3)
Hall, Per (3)
Froguel, P (3)
Butler, Lynn M. (3)
Mari, Andrea (3)
Ridderstråle, M. (3)
Sjöberg, Ronald (3)
Pawitan, Yudi (3)
Brunak, S. (3)
Brorsson, Caroline (3)
Forgie, Ian (3)
Giordano, G.N. (3)
Pavo, Imre (3)
Ruetten, Hartmut (3)
Franks, P.W. (3)
Fitipaldi, H. (3)
Pomares-Millan, H. (3)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (42)
Karolinska Institutet (29)
Lunds universitet (13)
Göteborgs universitet (10)
Uppsala universitet (10)
Stockholms universitet (9)
visa fler...
Umeå universitet (3)
Jönköping University (3)
Linköpings universitet (2)
Högskolan i Halmstad (1)
Örebro universitet (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (56)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (46)
Naturvetenskap (11)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy