SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hosaka K) "

Sökning: WFRF:(Hosaka K)

  • Resultat 11-20 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  •  
12.
  •  
13.
  • Hosaka, K, et al. (författare)
  • Therapeutic paradigm of dual targeting VEGF and PDGF for effectively treating FGF-2 off-target tumors
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 3704-
  • Tidskriftsartikel (refereegranskat)abstract
    • FGF-2 displays multifarious functions in regulation of angiogenesis and vascular remodeling. However, effective drugs for treating FGF-2+ tumors are unavailable. Here we show that FGF-2 modulates tumor vessels by recruiting NG2+ pricytes onto tumor microvessels through a PDGFRβ-dependent mechanism. FGF-2+ tumors are intrinsically resistant to clinically available drugs targeting VEGF and PDGF. Surprisingly, dual targeting the VEGF and PDGF signaling produces a superior antitumor effect in FGF-2+ breast cancer and fibrosarcoma models. Mechanistically, inhibition of PDGFRβ ablates FGF-2-recruited perivascular coverage, exposing anti-VEGF agents to inhibit vascular sprouting. These findings show that the off-target FGF-2 is a resistant biomarker for anti-VEGF and anti-PDGF monotherapy, but a highly beneficial marker for combination therapy. Our data shed light on mechanistic interactions between various angiogenic and remodeling factors in tumor neovascularization. Optimization of antiangiogenic drugs with different principles could produce therapeutic benefits for treating their resistant off-target cancers.
  •  
14.
  •  
15.
  • Jing, X, et al. (författare)
  • COVID-19 instigates adipose browning and atrophy through VEGF in small mammals
  • 2022
  • Ingår i: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4:12, s. 1674-
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with COVID-19 frequently manifest adipose atrophy, weight loss and cachexia, which significantly contribute to poor quality of life and mortality1,2. Browning of white adipose tissue and activation of brown adipose tissue are effective processes for energy expenditure3–7; however, mechanistic and functional links between SARS-CoV-2 infection and adipose thermogenesis have not been studied. In this study, we provide experimental evidence that SARS-CoV-2 infection augments adipose browning and non-shivering thermogenesis (NST), which contributes to adipose atrophy and body weight loss. In mouse and hamster models, SARS-CoV-2 infection activates brown adipose tissue and instigates a browning or beige phenotype of white adipose tissues, including augmented NST. This browning phenotype was also observed in post-mortem adipose tissue of four patients who died of COVID-19. Mechanistically, high levels of vascular endothelial growth factor (VEGF) in the adipose tissue induces adipose browning through vasculature–adipocyte interaction. Inhibition of VEGF blocks COVID-19-induced adipose tissue browning and NST and partially prevents infection-induced body weight loss. Our data suggest that the browning of adipose tissues induced by COVID-19 can contribute to adipose tissue atrophy and weight loss observed during infection. Inhibition of VEGF signaling may represent an effective approach for preventing and treating COVID-19-associated weight loss.
  •  
16.
  • Keklikoglou, I., et al. (författare)
  • MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes
  • 2015
  • Ingår i: Oncogene. - : NATURE PUBLISHING GROUP. - 0950-9232 .- 1476-5594. ; 34:37, s. 4867-4878
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in cancer biology have emerged important roles for microRNAs (miRNAs) in regulating tumor responses. However, their function in mediating intercellular communication within the tumor microenvironment is thus far poorly explored. Here, we found miR-206 to be abrogated in human pancreatic ductal adenocarcinoma (PDAC) specimens and cell lines. We show that miR-206 directly targets the oncogenes KRAS and annexin a2 (ANXA2), thereby acting as tumor suppressor in PDAC cells by blocking cell cycle progression, cell proliferation, migration and invasion. Importantly, we identified miR-206 as a negative regulator of oncogenic KRAS-induced nuclear factor-kappa B transcriptional activity, resulting in a concomitant reduction of the expression and secretion of pro-angiogenic and pro-inflammatory factors including the cytokine interleukin-8, the chemokines (C-X-C motif) ligand 1 and (C-C motif) ligand 2, and the granulocyte macrophage colony-stimulating factor. We further show that miR-206 abrogates the expression and secretion of the potent pro-lymphangiogenic factor vascular endothelial growth factor C in pancreatic cancer cells through an NF-kappa B-independent mechanism. By using in vitro and in vivo approaches, we reveal that re-expression of miR-206 in PDAC cells is sufficient to inhibit tumor blood and lymphatic vessel formation, thus leading to a significant delay of tumor growth and progression. Taken together, our study sheds light onto the role of miR-206 as a pleiotropic modulator of different hallmarks of cancer, and as such raising the intriguing possibility that miR-206 may be an attractive candidate for miRNA-based anticancer therapies.
  •  
17.
  • Seki, T, et al. (författare)
  • Ablation of endothelial VEGFR1 improves metabolic dysfunction by inducing adipose tissue browning
  • 2018
  • Ingår i: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 215:2, s. 611-626
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis plays an instrumental role in the modulation of adipose tissue mass and metabolism. Targeting adipose vasculature provides an outstanding opportunity for treatment of obesity and metabolic disorders. Here, we report the physiological functions of VEGFR1 in the modulation of adipose angiogenesis, obesity, and global metabolism. Pharmacological inhibition and genetic deletion of endothelial VEGFR1 augmented adipose angiogenesis and browning of subcutaneous white adipose tissue, leading to elevated thermogenesis. In a diet-induced obesity model, endothelial-VEGFR1 deficiency demonstrated a potent anti-obesity effect by improving global metabolism. Along with metabolic changes, fatty liver and insulin sensitivity were also markedly improved in VEGFR1-deficient high fat diet (HFD)–fed mice. Together, our data indicate that targeting of VEGFR1 provides an exciting new opportunity for treatment of obesity and metabolic diseases, such as liver steatosis and type 2 diabetes.
  •  
18.
  •  
19.
  • Seki, T, et al. (författare)
  • Brown-fat-mediated tumour suppression by cold-altered global metabolism
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 608:79237922, s. 421-
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose uptake is essential for cancer glycolysis and is involved in non-shivering thermogenesis of adipose tissues1–6. Most cancers use glycolysis to harness energy for their infinite growth, invasion and metastasis2,7,8. Activation of thermogenic metabolism in brown adipose tissue (BAT) by cold and drugs instigates blood glucose uptake in adipocytes4,5,9. However, the functional effects of the global metabolic changes associated with BAT activation on tumour growth are unclear. Here we show that exposure of tumour-bearing mice to cold conditions markedly inhibits the growth of various types of solid tumours, including clinically untreatable cancers such as pancreatic cancers. Mechanistically, cold-induced BAT activation substantially decreases blood glucose and impedes the glycolysis-based metabolism in cancer cells. The removal of BAT and feeding on a high-glucose diet under cold exposure restore tumour growth, and genetic deletion of Ucp1—the key mediator for BAT-thermogenesis—ablates the cold-triggered anticancer effect. In a pilot human study, mild cold exposure activates a substantial amount of BAT in both healthy humans and a patient with cancer with mitigated glucose uptake in the tumour tissue. These findings provide a previously undescribed concept and paradigm for cancer therapy that uses a simple and effective approach. We anticipate that cold exposure and activation of BAT through any other approach, such as drugs and devices either alone or in combination with other anticancer therapeutics, will provide a general approach for the effective treatment of various cancers.
  •  
20.
  • Seki, T, et al. (författare)
  • Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat
  • 2016
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7, s. 12152-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold- and β3-adrenoceptor agonist-induced sympathetic activation leads to angiogenesis and UCP1-dependent thermogenesis in mouse brown and white adipose tissues. Here we show that endothelial production of PDGF-CC during white adipose tissue (WAT) angiogenesis regulates WAT browning. We find that genetic deletion of endothelial VEGFR2, knockout of the Pdgf-c gene or pharmacological blockade of PDGFR-α impair the WAT-beige transition. We further show that PDGF-CC stimulation upregulates UCP1 expression and acquisition of a beige phenotype in differentiated mouse WAT-PDGFR-α+ progenitor cells, as well as in human WAT-PDGFR-α+ adipocytes, supporting the physiological relevance of our findings. Our data reveal a paracrine mechanism by which angiogenic endothelial cells modulate adipocyte metabolism, which may provide new targets for the treatment of obesity and related metabolic diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy