SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isomaa B) "

Sökning: WFRF:(Isomaa B)

  • Resultat 31-40 av 56
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Almgren, Peter, et al. (författare)
  • Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study.
  • 2011
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 54, s. 2811-2819
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: To study the heritability and familiality of type 2 diabetes and related quantitative traits in families from the Botnia Study in Finland. METHODS: Heritability estimates for type 2 diabetes adjusted for sex, age and BMI are provided for different age groups of type 2 diabetes and for 34 clinical and metabolic traits in 5,810 individuals from 942 families using a variance component model (SOLAR). In addition, family means of these traits and their distribution across families are calculated. RESULTS: The strongest heritability for type 2 diabetes was seen in patients with age at onset 35-60 years (h (2) = 0.69). However, including patients with onset up to 75 years dropped the h (2) estimates to 0.31. Among quantitative traits, the highest h (2) estimates in all individuals and in non-diabetic individuals were seen for lean body mass (h (2) = 0.53-0.65), HDL-cholesterol (0.52-0.61) and suppression of NEFA during OGTT (0.63-0.76) followed by measures of insulin secretion (insulinogenic index [IG(30)] = 0.41-0.50) and insulin action (insulin sensitivity index [ISI] = 0.37-0.40). In contrast, physical activity showed rather low heritability (0.16-0.18), whereas smoking showed strong heritability (0.57-0.59). Family means of these traits differed two- to fivefold between families belonging to the lowest and highest quartile of the trait (p < 0.00001). CONCLUSIONS/INTERPRETATION: To detect stronger genetic effects in type 2 diabetes, it seems reasonable to restrict inclusion of patients to those with age at onset 35-60 years. Sequencing of families with extreme quantitative traits could be an important next step in the dissection of the genetics of type 2 diabetes.
  •  
32.
  • Fall, Tove, et al. (författare)
  • The Role of Adiposity in Cardiometabolic Traits : A Mendelian Randomization Analysis
  • 2013
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 10:6, s. e1001474-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach. Methods and Findings: We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses. Age-and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI-trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03-1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1-1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001). Conclusions: We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
  •  
33.
  • Fredriksson, Jenny, et al. (författare)
  • Variation in GYS1 Interacts with Exercise and Gender to Predict Cardiovascular Mortality
  • 2007
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. The muscle glycogen synthase gene (GYS1) has been associated with type 2 diabetes (T2D), the metabolic syndrome (MetS), male myocardial infarction and a defective increase in muscle glycogen synthase protein in response to exercise. We addressed the questions whether polymorphism in GYS1 can predict cardiovascular (CV) mortality in a high-risk population, if this risk is influenced by gender or physical activity, and if the association is independent of genetic variation in nearby apolipoprotein E gene (APOE). Methodology/Principal Findings. Polymorphisms in GYS1 (XbaIC>T) and APOE (-219G>T, epsilon 2/epsilon 3/epsilon 4) were genotyped in 4,654 subjects participating in the Botnia T2D-family study and followed for a median of eight years. Mortality analyses were performed using Cox proportional-hazards regression. During the follow-up period, 749 individuals died, 409 due to CV causes. In males the GYS1 XbaI T-allele (hazard ratio (HR) 1.9 [1.2-2.9]), T2D (2.5 [1.7-3.8]), earlier CV events (1.7 [1.2-2.5]), physical inactivity (1.9 [1.2-2.9]) and smoking (1.5 [1.0-2.3]) predicted CV mortality. The GYS1 XbaI T-allele predicted CV mortality particularly in physically active males (HR 1.7 [1.3-2.0]). Association of GYS1 with CV mortality was independent of APOE (219TT/epsilon 4), which by its own exerted an effect on CV mortality risk in females (2.9 [1.9-4.4]). Other independent predictors of CV mortality in females were fasting plasma glucose (1.2 [1.1-1.2]), high body mass index (BMI) (1.0 [1.0-1.1]), hypertension (1.9 [1.2-3.1]), earlier CV events (1.9 [1.3-2.8]) and physical inactivity (1.9 [1.2-2.8]). Conclusions/Significance. Polymorphisms in GYS1 and APOE predict CV mortality in T2D families in a gender-specific fashion and independently of each other. Physical exercise seems to unmask the effect associated with the GYS1 polymorphism, rendering carriers of the variant allele less susceptible to the protective effect of exercise on the risk of CV death, which finding could be compatible with a previous demonstration of defective increase in the glycogen synthase protein in carriers of this polymorphism.
  •  
34.
  • Guey, Lin T., et al. (författare)
  • Power in the Phenotypic Extremes: A Simulation Study of Power in Discovery and Replication of Rare Variants
  • 2011
  • Ingår i: Genetic Epidemiology. - : Wiley. - 0741-0395. ; 35:4, s. 236-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-generation sequencing technologies are making it possible to study the role of rare variants in human disease. Many studies balance statistical power with cost-effectiveness by (a) sampling from phenotypic extremes and (b) utilizing a two-stage design. Two-stage designs include a broad-based discovery phase and selection of a subset of potential causal genes/variants to be further examined in independent samples. We evaluate three parameters: first, the gain in statistical power due to extreme sampling to discover causal variants; second, the informativeness of initial (Phase I) association statistics to select genes/variants for follow-up; third, the impact of extreme and random sampling in (Phase 2) replication. We present a quantitative method to select individuals from the phenotypic extremes of a binary trait, and simulate disease association studies under a variety of sample sizes and sampling schemes. First, we find that while studies sampling from extremes have excellent power to discover rare variants, they have limited power to associate them to phenotype-suggesting high false-negative rates for upcoming studies. Second, consistent with previous studies, we find that the effect sizes estimated in these studies are expected to be systematically larger compared with the overall population effect size; in a well-cited lipids study, we estimate the reported effect to be twofold larger. Third, replication studies require large samples from the general population to have sufficient power; extreme sampling could reduce the required sample size as much as fourfold. Our observations offer practical guidance for the design and interpretation of studies that utilize extreme sampling. Genet. Epidemiol. 35: 236-246, 2011. (c) 2011 Wiley-Liss, Inc.
  •  
35.
  • Holmkvist, Johan, et al. (författare)
  • Polymorphisms in the gene encoding the voltage-dependent Ca(2+) channel Ca (V)2.3 (CACNA1E) are associated with type 2 diabetes and impaired insulin secretion
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 50:12, s. 2467-2475
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Glucose-stimulated insulin secretion is dependent on the electrical activity of beta cells; hence, genes encoding beta cell ion channels are potential candidate genes for type 2 diabetes. The gene encoding the voltage-dependent Ca(2+) channel Ca(V)2.3 (CACNA1E), telomeric to a region that has shown suggestive linkage to type 2 diabetes (1q21-q25), has been ascribed a role for second-phase insulin secretion. METHODS: Based upon the genotyping of 52 haplotype tagging single nucleotide polymorphisms (SNPs) in a type 2 diabetes case-control sample (n = 1,467), we selected five SNPs that were nominally associated with type 2 diabetes and genotyped them in the following groups (1) a new case-control sample of 6,570 individuals from Sweden; (2) 2,293 individuals from the Botnia prospective cohort; and (3) 935 individuals with insulin secretion data from an IVGTT. RESULTS: The rs679931 TT genotype was associated with (1) an increased risk of type 2 diabetes in the Botnia case-control sample [odds ratio (OR) 1.4, 95% CI 1.0-2.0, p = 0.06] and in the replication sample (OR 1.2, 95% CI 1.0-1.5, p = 0.01 one-tailed), with a combined OR of 1.3 (95% CI 1.1-1.5, p = 0.004 two-tailed); (2) reduced insulin secretion [insulinogenic index at 30 min p = 0.02, disposition index (D (I)) p = 0.03] in control participants during an OGTT; (3) reduced second-phase insulin secretion at 30 min (p = 0.04) and 60 min (p = 0.02) during an IVGTT; and (4) reduced D (I) over time in the Botnia prospective cohort (p = 0.05). CONCLUSIONS/INTERPRETATION: We conclude that genetic variation in the CACNA1E gene contributes to an increased risk of the development of type 2 diabetes by reducing insulin secretion.
  •  
36.
  •  
37.
  • Ingelsson, Erik, et al. (författare)
  • Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans
  • 2010
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Konferensbidrag (refereegranskat)abstract
    • OBJECTIVE-Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS-We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS-The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS-Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. Diabetes 59:1266-1275, 2010
  •  
38.
  • Ingelsson, Erik, et al. (författare)
  • Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.
  •  
39.
  • Isomaa, B, et al. (författare)
  • The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes
  • 2001
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 44:9, s. 1148-1154
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: We examined features of the metabolic syndrome to see if they modified the risk of chronic diabetic complications in patients with Type II (non-insulin-dependent) diabetes mellitus. METHODS: A total of 85 randomly selected patients with the metabolic syndrome (WHO definition) were compared with 85 Type II diabetic patients matched for age, sex, duration of diabetes, glycaemic control and without the syndrome to assess the microvascular and macrovascular complications. RESULTS: The patients with the metabolic syndrome had a higher prevalence of cardiovascular disease (52 vs 21%, p < 0.001), microalbuminuria or macroalbuminuria (23 vs 7%, p = 0.003) and distal neuropathy (16 vs 6%, p = 0.048) than patients without the syndrome. The patients with the metabolic syndrome had smaller LDL particle size (25.4+/-1.4 vs 26.4+/-1.1 nm; p < 0.001), which correlated with the ratio of serum triglycerides to HDL cholesterol (r = -0.64, p < 0.001). In a multiple logistic regression analysis the metabolic syndrome was associated with coronary heart disease (RR 3.84, p < 0.001) and microalbuminuria (RR 3.99, p = 0.01). Small LDL particle size was independently associated with neuropathy (RR 0.58; p = 0.04), whereas a high HbA1c was related to neuropathy (RR 1.69, p = 0.04), retinopathy (RR 1.53, p = 0.002) and microalbuminuria (RR 1.54, p = 0.01). CONCLUSION/INTERPRETATION: Although chronic hyperglycaemia is the main predictor of microvascular complications in patients with Type II diabetes, this risk is modified by some of the components of the metabolic syndrome.
  •  
40.
  • Jonsson, A, et al. (författare)
  • Assessing the effect of interaction between an FTO variant (rs9939609) and physical activity on obesity in 15,925 Swedish and 2,511 Finnish adults.
  • 2009
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 52:7, s. 1334-1338
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Recent reports have suggested that genotypes at the FTO locus interact with physical activity to modify levels of obesity-related traits. We tested this hypothesis in two non-diabetic population-based cohorts, the first from southern Sweden and the second from the Botnia region of western Finland. METHODS: In total 2,511 Finnish and 15,925 Swedish non-diabetic middle-aged adults were genotyped for the FTO rs9939609 variant. Physical activity was assessed by questionnaires and standard clinical procedures were conducted, including measures of height and weight and glucose regulation. Tests of gene x physical activity interaction were performed using linear interaction effects to determine whether the effect of this variant on BMI is modified by physical activity. RESULTS: The minor A allele at rs9939609 was associated with higher BMI in both cohorts, with the per allele difference in BMI being about 0.13 and 0.43 kg/m(2) in the Swedish and Finnish cohorts, respectively (p < 0.0001). The test of interaction between physical activity and the rs9939609 variant on BMI was not statistically significant after controlling for age and sex in either cohort (Sweden: p = 0.71, Finland: p = 0.18). CONCLUSIONS/INTERPRETATION: The present report does not support the notion that physical activity modifies the effects of the FTO rs9939609 variant on obesity risk in the non-diabetic Swedish or Finnish adults studied here.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 56
Typ av publikation
tidskriftsartikel (49)
konferensbidrag (7)
Typ av innehåll
refereegranskat (54)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Groop, Leif (54)
Lyssenko, Valeriya (32)
Isomaa, B. (29)
Isomaa, Bo (27)
Tuomi, Tiinamaija (26)
Almgren, Peter (22)
visa fler...
Laakso, Markku (21)
Boehnke, Michael (21)
Wareham, Nicholas J. (20)
Kuusisto, Johanna (20)
McCarthy, Mark I (20)
Mohlke, Karen L (20)
Tuomilehto, Jaakko (19)
Prokopenko, Inga (19)
Jackson, Anne U. (19)
Barroso, Ines (18)
Collins, Francis S. (18)
Tuomi, T. (17)
Ingelsson, Erik (16)
Salomaa, Veikko (15)
Pedersen, Oluf (15)
Hansen, Torben (15)
Hu, Frank B. (15)
Langenberg, Claudia (15)
Loos, Ruth J F (15)
Bonnycastle, Lori L. (15)
Lind, Lars (14)
Altshuler, David (14)
Illig, Thomas (14)
Meigs, James B. (14)
Frayling, Timothy M (14)
Nilsson, Peter (13)
Qi, Lu (13)
Thorleifsson, Gudmar (13)
Thorsteinsdottir, Un ... (13)
Stefansson, Kari (13)
Hattersley, Andrew T (13)
Walker, Mark (13)
Froguel, Philippe (13)
Morris, Andrew D (13)
Dupuis, Josée (13)
Voight, Benjamin F. (13)
Narisu, Narisu (13)
Grarup, Niels (12)
Mangino, Massimo (12)
Gieger, Christian (12)
Spector, Timothy D (12)
Palmer, Colin N. A. (12)
Meitinger, Thomas (12)
Grallert, Harald (12)
visa färre...
Lärosäte
Lunds universitet (52)
Uppsala universitet (24)
Karolinska Institutet (16)
Umeå universitet (11)
Göteborgs universitet (7)
Stockholms universitet (1)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (56)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (53)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy