SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jimenez Serra I) "

Sökning: WFRF:(Jimenez Serra I)

  • Resultat 11-20 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  •  
12.
  •  
13.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
14.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
15.
  •  
16.
  • 2021
  • swepub:Mat__t
  •  
17.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
18.
  • Hoare, M. G., et al. (författare)
  • The cradle of life and the SKA
  • 2014
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • We provide an overview of the exciting capabilities of the SKA in the Cradle of Life theme. With the deployment of the high frequency band 5 receivers, the phase 1 of the SKA can conduct headline science in the study of the earliest stages of grain growth in proto-planetary disks. SKA1-MID can map the 2 cm continuum emission at a resolution of 4 au in the nearest systems and therefore begin to probe the distribuion of cm-sized particles across the snow line. This frequency range will also enable deep searches for pre-biotic molecules such as amino acids from pre-stellar cores to the cold, outer regions of proto-planetary disks where cometary material forms. The lowest frequency capabilities of SKA1 can be used to examine the magnetic fields of exo-planets via their auroral radio emission. This gives unique insight into their interiors and could potentially detect exo-moons. Across the full frequency range, the SKA1 will also carry out systematic, volume-limited searches of exo-planet systems for signals from technologically advanced civilizations. The sensitivity of SKA1 means that these only need to be at the level of typical airport radar signals in the nearest systems. Hence, the SKA1 can conduct high impact science from the first steps on the road to planets and life, through areas affecting the habitability of planets, and ultimately, to whether we are alone in the Galaxy. These inspirational themes will greatly help in the effort to bring SKA1 science to a wide audience and to ensure the progression to the full SKA.
  •  
19.
  • Jimenez-Serra, I., et al. (författare)
  • The Complex Organic Molecular Content in the L1498 Starless Core
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 917:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations carried out toward starless and prestellar cores have revealed that complex organic molecules are prevalent in these objects, but it is unclear what chemical processes are involved in their formation. Recently, it has been shown that complex organics are preferentially produced at an intermediate-density shell within the L1544 prestellar core at radial distances of similar to 4000 au with respect to the core center. However, the spatial distribution of complex organics has only been inferred toward this core, and it remains unknown whether these species present a similar behavior in other cores. We report high-sensitivity observations carried out toward two positions in the L1498 starless core, the dust peak and a position located at a distance of similar to 11,000 au from the center of the core where the emission of CH3OH peaks. Similarly to L1544, our observations reveal that small O-bearing molecules and N-bearing species are enhanced by factors of similar to 4-14 toward the outer shell of L1498. However, unlike L1544, large O-bearing organics such as CH3CHO, CH3OCH3, or CH3OCHO are not detected within our sensitivity limits. For N-bearing organics, these species are more abundant toward the outer shell of the L1498 starless core than toward the one in L1544. We propose that the differences observed between O-bearing and N-bearing species in L1498 and L1544 are due to the different physical structure of these cores, which in turn is a consequence of their evolutionary stage, with L1498 being younger than L1544.
  •  
20.
  • Taquet, V, et al. (författare)
  • Seeds of Life in Space (SOLIS) VI. Chemical evolution of sulfuretted species along the outflows driven by the low-mass protostellar binary NGC1333-IRAS4A
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Low-mass protostars drive powerful molecular outflows that can be observed with millimetre and submillimetre telescopes. Various sulfuretted species are known to be bright in shocks and could be used to infer the physical and chemical conditions throughout the observed outflows. Aims. The evolution of sulfur chemistry is studied along the outflows driven by the NGC1333-IRAS4A protobinary system located in the Perseus cloud to constrain the physical and chemical processes at work in shocks. Methods. We observed various transitions from OCS, CS, SO, and SO2 towards NGC1333-IRAS4A in the 1.3, 2, and 3mm bands using the IRAM NOrthern Extended Millimeter Array and we interpreted the observations through the use of the Paris-Durham shock model. Results. The targeted species clearly show different spatial emission along the two outflows driven by IRAS4A. OCS is brighter on small and large scales along the south outflow driven by IRAS4A1, whereas SO2 is detected rather along the outflow driven by IRAS4A2 that is extended along the north east-south west direction. SO is detected at extremely high radial velocity up to +25 km s 1 relative to the source velocity, clearly allowing us to distinguish the two outflows on small scales. Column density ratio maps estimated from a rotational diagram analysis allowed us to confirm a clear gradient of the OCS/SO2 column density ratio between the IRAS4A1 and IRAS4A2 outflows. Analysis assuming non Local Thermodynamic Equilibrium of four SO2 transitions towards several SiO emission peaks suggests that the observed gas should be associated with densities higher than 105 cm 3 and relatively warm (T > 100 K) temperatures in most cases. Conclusions. The observed chemical differentiation between the two outflows of the IRAS4A system could be explained by a different chemical history. The outflow driven by IRAS4A1 is likely younger and more enriched in species initially formed in interstellar ices, such as OCS, and recently sputtered into the shock gas. In contrast, the longer and likely older outflow triggered by IRAS4A2 is more enriched in species that have a gas phase origin, such as SO2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy