SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kajantie Eero) "

Search: WFRF:(Kajantie Eero)

  • Result 11-20 of 23
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Kilpeläinen, Tuomas O, et al. (author)
  • Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
  •  
12.
  • Lango Allen, Hana, et al. (author)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Journal article (peer-reviewed)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
13.
  • Lind, Lars, et al. (author)
  • Genome Wide Association Identifies Common Variants at the SERPINA6/SERPINA1 Locus Influencing Plasma Cortisol and Corticosteroid Binding Globulin.
  • 2014
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 10:7
  • Journal article (peer-reviewed)abstract
    • Variation in plasma levels of cortisol, an essential hormone in the stress response, is associated in population-based studies with cardio-metabolic, inflammatory and neuro-cognitive traits and diseases. Heritability of plasma cortisol is estimated at 30-60% but no common genetic contribution has been identified. The CORtisol NETwork (CORNET) consortium undertook genome wide association meta-analysis for plasma cortisol in 12,597 Caucasian participants, replicated in 2,795 participants. The results indicate that <1% of variance in plasma cortisol is accounted for by genetic variation in a single region of chromosome 14. This locus spans SERPINA6, encoding corticosteroid binding globulin (CBG, the major cortisol-binding protein in plasma), and SERPINA1, encoding α1-antitrypsin (which inhibits cleavage of the reactive centre loop that releases cortisol from CBG). Three partially independent signals were identified within the region, represented by common SNPs; detailed biochemical investigation in a nested sub-cohort showed all these SNPs were associated with variation in total cortisol binding activity in plasma, but some variants influenced total CBG concentrations while the top hit (rs12589136) influenced the immunoreactivity of the reactive centre loop of CBG. Exome chip and 1000 Genomes imputation analysis of this locus in the CROATIA-Korcula cohort identified missense mutations in SERPINA6 and SERPINA1 that did not account for the effects of common variants. These findings reveal a novel common genetic source of variation in binding of cortisol by CBG, and reinforce the key role of CBG in determining plasma cortisol levels. In turn this genetic variation may contribute to cortisol-associated degenerative diseases.
  •  
14.
  • Lu, Yingchang, et al. (author)
  • New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
  •  
15.
  • Murtoniemi, Katja, et al. (author)
  • Longitudinal changes in plasma hemopexin and alpha-1-microglobulin concentrations in women with and without clinical risk factors for pre-eclampsia
  • 2019
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:12
  • Journal article (peer-reviewed)abstract
    • Recent studies have shown increased concentration of fetal hemoglobin (HbF) in pre-eclamptic women. Plasma hemopexin (Hpx) and alpha-1-microglobulin (A1M) are hemoglobin scavenger proteins that protect against toxic effects of free heme released in the hemoglobin degradation process. We used an enzyme-linked immunosorbent assay to analyze maternal plasma Hpx and A1M concentrations at 12–14, 18–20 and 26–28 weeks of gestation in three groups: 1) 51 women with a low risk for pre-eclampsia (LRW), 2) 49 women with a high risk for pre-eclampsia (PE) who did not develop PE (HRW) and 3) 42 women with a high risk for PE who developed PE (HRPE). The study had three aims: 1) to investigate whether longitudinal differences exist between study groups, 2) to examine if Hpx and A1M concentrations develop differently in pre-eclamptic women with small for gestational age (SGA) fetuses vs. pre-eclamptic women with appropriate for gestational age fetuses, and 3) to examine if longitudinal Hpx and A1M profiles differ by PE subtype (early-onset vs. late-onset and severe vs. non-severe PE). Repeated measures analysis of variance was used to analyze differences in Hpx and A1M concentrations between the groups. We found that the differences in longitudinal plasma Hpx and A1M concentrations in HRW compared to HRPE and to LRW may be associated with reduced risk of PE regardless of clinical risk factors. In women who developed PE, a high A1M concentration from midgestation to late second trimester was associated with SGA. There were no differences in longitudinal Hpx and A1M concentrations from first to late second trimester in high-risk women who developed early-onset or. late-onset PE or in women who developed severe or. non-severe PE.
  •  
16.
  • Pervjakova, Natalia, et al. (author)
  • Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes
  • 2022
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 31:19, s. 3377-3391
  • Journal article (peer-reviewed)abstract
    • Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy (GenDIP) Consortium assembled genome-wide association studies (GWAS) of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (p < 5x10-8) with GDM, mapping to/near MTNR1B (p = 4.3x10-54), TCF7L2 (p = 4.0x10-16), CDKAL1 (p = 1.6 × 10-14), CDKN2A-CDKN2B (p = 4.1x10-9) and HKDC1 (p = 2.9x10-8). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D; and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomisation analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.
  •  
17.
  • Ronkainen, Justiina, et al. (author)
  • LongITools: Dynamic longitudinal exposome trajectories in cardiovascular and metabolic noncommunicable diseases
  • 2022
  • In: Environmental Epidemiology. - 2474-7882. ; 6:1
  • Journal article (peer-reviewed)abstract
    • The current epidemics of cardiovascular and metabolic noncommunicable diseases have emerged alongside dramatic modifications in lifestyle and living environments. These correspond to changes in our "modern" postwar societies globally characterized by rural-to-urban migration, modernization of agricultural practices, and transportation, climate change, and aging. Evidence suggests that these changes are related to each other, although the social and biological mechanisms as well as their interactions have yet to be uncovered. LongITools, as one of the 9 projects included in the European Human Exposome Network, will tackle this environmental health equation linking multidimensional environmental exposures to the occurrence of cardiovascular and metabolic noncommunicable diseases.
  •  
18.
  • Räikkönen, Katri, et al. (author)
  • Insulin, Glucose, and the Metabolic Syndrome in Cardiovascular Behavioral Medicine
  • 2022
  • In: Handbook of Cardiovascular Behavioral Medicine. - New York, NY : Springer New York. - 9780387859606 - 9780387859590 ; , s. 809-831
  • Book chapter (other academic/artistic)abstract
    • It has been known for decades that risk factors for diabetes and cardiovascular disease (CVD) tend to cluster. Metabolic syndrome refers to this risk factor clustering for some of the more well-established and dangerous risk factors. This chapter provides a historical overview on the concept of the metabolic syndrome; describes the clinical criteria used in the definition of the metabolic syndrome and how to measure components of the metabolic syndrome, emphasizing measurements related to insulin and glucose; provides a brief overview of the genetic, endocrine, and early life determinants of the metabolic syndrome; and presents findings from studies that have focused on psychological correlates, determinants, and consequences of the metabolic syndrome, focusing in particular on psychosocial stress and depression.
  •  
19.
  • Speliotes, Elizabeth K., et al. (author)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Journal article (peer-reviewed)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
20.
  • Surendran, Praveen, et al. (author)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Journal article (peer-reviewed)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 23
Type of publication
journal article (22)
book chapter (1)
Type of content
peer-reviewed (22)
other academic/artistic (1)
Author/Editor
Eriksson, Johan G. (12)
Luan, Jian'an (10)
Rudan, Igor (9)
Hansen, Torben (9)
Hayward, Caroline (9)
Perola, Markus (8)
show more...
Wareham, Nicholas J. (8)
McCarthy, Mark I (8)
Boehnke, Michael (8)
Mohlke, Karen L (8)
Ingelsson, Erik (8)
Havulinna, Aki S. (8)
Hofman, Albert (8)
Salomaa, Veikko (7)
Ohlsson, Claes, 1965 (7)
Deloukas, Panos (7)
Laakso, Markku (7)
Pedersen, Oluf (7)
Thorleifsson, Gudmar (7)
Stefansson, Kari (7)
Rivadeneira, Fernand ... (7)
Jousilahti, Pekka (7)
Harris, Tamara B (7)
Loos, Ruth J F (7)
Tuomi, Tiinamaija (6)
Groop, Leif (6)
Jula, Antti (6)
Lind, Lars (6)
Campbell, Harry (6)
Grarup, Niels (6)
Ridker, Paul M. (6)
Chasman, Daniel I. (6)
van Duijn, Cornelia ... (6)
Langenberg, Claudia (6)
Hunter, David J (6)
Lehtimäki, Terho (6)
Tuomilehto, Jaakko (6)
Thorsteinsdottir, Un ... (6)
Koskinen, Seppo (6)
Mangino, Massimo (6)
Gieger, Christian (6)
Jarvelin, Marjo-Riit ... (6)
Mahajan, Anubha (6)
Spector, Timothy D (6)
Metspalu, Andres (6)
Wilson, James F. (6)
Kolcic, Ivana (6)
Uitterlinden, André ... (6)
Elliott, Paul (6)
Gudnason, Vilmundur (6)
show less...
University
Lund University (14)
Karolinska Institutet (12)
Uppsala University (11)
University of Gothenburg (8)
Umeå University (4)
Stockholm University (2)
show more...
Linköping University (1)
Stockholm School of Economics (1)
Chalmers University of Technology (1)
show less...
Language
English (23)
Research subject (UKÄ/SCB)
Medical and Health Sciences (23)
Natural sciences (3)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view