SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kar Siddhartha) "

Sökning: WFRF:(Kar Siddhartha)

  • Resultat 11-20 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Larsson, Susanna C., et al. (författare)
  • Serum Estradiol and 20 Site-Specific Cancers in Women : Mendelian Randomization Study.
  • 2021
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : Endocrine Society. - 0021-972X .- 1945-7197. ; 107:2, s. e467-e474
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: The causal role of endogenous estradiol in cancers other than breast and endometrial cancer remains unclear.OBJECTIVE: To assess the causal associations of endogenous 17β-estradiol (E2), the most potent estrogen, with cancer risk in women through Mendelian randomization.METHODS: As primary genetic instrument, we used a genetic variant in the CYP19A1 gene that is strongly associated with serum E2 levels. Summary statistics genetic data for the association of the E2 variant with breast, endometrial, and ovarian cancer were obtained from large-scale consortia. We additionally estimated the associations of the E2 variant with any and 20 site-specific cancers in 198 825 women of European descent in UK Biobank. Odds ratios (OR) of cancer per 0.01 unit increase in log-transformed serum E2 levels in pmol/L were estimated using the Wald ratio.RESULTS: Genetic predisposition to higher serum E2 levels was associated with increased risk of estrogen receptor positive breast cancer (OR 1.02; 95% confidence interval [CI] 1.01-1.03; P=2.5×10 -3), endometrial cancer overall (OR 1.09; 95% CI 1.06-1.11; P=7.3×10 -13), and endometrial cancer of the endometrioid histology subtype (OR 1.10; 95% CI 1.07-1.13; P=2.1×10 -11). There were suggestive associations with breast cancer overall (OR 1.01; 95% CI 1.00-1.02; P=0.02), ovarian cancer of the endometrioid subtype (OR 1.05; 95% CI 1.01-1.10; P=0.02), and stomach cancer (OR 1.12; 95% CI 1.00-1.26; P=0.05), but no significant association with other cancers.CONCLUSION: This study supports a role of E2 in the development of estrogen receptor positive breast cancer and endometrioid endometrial cancer, but found no strong association with other cancers in women.
  •  
12.
  • Larsson, Susanna C., et al. (författare)
  • Smoking, alcohol consumption, and cancer : A mendelian randomisation study in UK Biobank and international genetic consortia participants
  • 2020
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundSmoking is a well-established cause of lung cancer and there is strong evidence that smoking also increases the risk of several other cancers. Alcohol consumption has been inconsistently associated with cancer risk in observational studies. This mendelian randomisation (MR) study sought to investigate associations in support of a causal relationship between smoking and alcohol consumption and 19 site-specific cancers.Methods and findingsWe used summary-level data for genetic variants associated with smoking initiation (ever smoked regularly) and alcohol consumption, and the corresponding associations with lung, breast, ovarian, and prostate cancer from genome-wide association studies consortia, including participants of European ancestry. We additionally estimated genetic associations with 19 site-specific cancers among 367,643 individuals of European descent in UK Biobank who were 37 to 73 years of age when recruited from 2006 to 2010. Associations were considered statistically significant at a Bonferroni corrected p-value below 0.0013. Genetic predisposition to smoking initiation was associated with statistically significant higher odds of lung cancer in the International Lung Cancer Consortium (odds ratio [OR] 1.80; 95% confidence interval [CI] 1.59–2.03; p = 2.26 × 10−21) and UK Biobank (OR 2.26; 95% CI 1.92–2.65; p = 1.17 × 10−22). Additionally, genetic predisposition to smoking was associated with statistically significant higher odds of cancer of the oesophagus (OR 1.83; 95% CI 1.34–2.49; p = 1.31 × 10−4), cervix (OR 1.55; 95% CI 1.27–1.88; p = 1.24 × 10−5), and bladder (OR 1.40; 95% CI 1.92–2.65; p = 9.40 × 10−5) and with statistically nonsignificant higher odds of head and neck (OR 1.40; 95% CI 1.13–1.74; p = 0.002) and stomach cancer (OR 1.46; 95% CI 1.05–2.03; p = 0.024). In contrast, there was an inverse association between genetic predisposition to smoking and prostate cancer in the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome consortium (OR 0.90; 95% CI 0.83–0.98; p = 0.011) and in UK Biobank (OR 0.90; 95% CI 0.80–1.02; p = 0.104), but the associations did not reach statistical significance. We found no statistically significant association between genetically predicted alcohol consumption and overall cancer (n = 75,037 cases; OR 0.95; 95% CI 0.84–1.07; p = 0.376). Genetically predicted alcohol consumption was statistically significantly associated with lung cancer in the International Lung Cancer Consortium (OR 1.94; 95% CI 1.41–2.68; p = 4.68 × 10−5) but not in UK Biobank (OR 1.12; 95% CI 0.65–1.93; p = 0.686). There was no statistically significant association between alcohol consumption and any other site-specific cancer. The main limitation of this study is that precision was low in some analyses, particularly for analyses of alcohol consumption and site-specific cancers.ConclusionsOur findings support the well-established relationship between smoking and lung cancer and suggest that smoking may also be a risk factor for cancer of the head and neck, oesophagus, stomach, cervix, and bladder. We found no evidence supporting a relationship between alcohol consumption and overall or site-specific cancer risk.
  •  
13.
  • Lawrenson, Kate, et al. (författare)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
14.
  • Lindström, Sara, et al. (författare)
  • Genome-wide analyses characterize shared heritability among cancers and identify novel cancer susceptibility regions
  • 2023
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 115:6, s. 712-732
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The shared inherited genetic contribution to risk of different cancers is not fully known. In this study, we leverage results from 12 cancer genome-wide association studies (GWAS) to quantify pairwise genome-wide genetic correlations across cancers and identify novel cancer susceptibility loci.METHODS: We collected GWAS summary statistics for 12 solid cancers based on 376 759 participants with cancer and 532 864 participants without cancer of European ancestry. The included cancer types were breast, colorectal, endometrial, esophageal, glioma, head and neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancers. We conducted cross-cancer GWAS and transcriptome-wide association studies to discover novel cancer susceptibility loci. Finally, we assessed the extent of variant-specific pleiotropy among cancers at known and newly identified cancer susceptibility loci.RESULTS: We observed widespread but modest genome-wide genetic correlations across cancers. In cross-cancer GWAS and transcriptome-wide association studies, we identified 15 novel cancer susceptibility loci. Additionally, we identified multiple variants at 77 distinct loci with strong evidence of being associated with at least 2 cancer types by testing for pleiotropy at known cancer susceptibility loci.CONCLUSIONS: Overall, these results suggest that some genetic risk variants are shared among cancers, though much of cancer heritability is cancer-specific and thus tissue-specific. The increase in statistical power associated with larger sample sizes in cross-disease analysis allows for the identification of novel susceptibility regions. Future studies incorporating data on multiple cancer types are likely to identify additional regions associated with the risk of multiple cancer types.
  •  
15.
  • Thompson, Deborah J, et al. (författare)
  • Genetic predisposition to mosaic Y chromosome loss in blood
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 575, s. 652-657
  • Tidskriftsartikel (refereegranskat)abstract
    • Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.
  •  
16.
  • Titova, Olga E, et al. (författare)
  • Sleep duration and risk of overall and 22 site-specific cancers : A Mendelian randomization study
  • 2021
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 148:4, s. 914-920
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of sleep duration in relation to the risk of site-specific cancers other than breast cancer are scarce. Furthermore, the available results are inconclusive and the causality remains unclear. We aimed to investigate the potential causal associations of sleep duration with overall and site-specific cancers using the Mendelian randomization (MR) design. Single-nucleotide polymorphisms associated with the sleep traits identified from a genome-wide association study were used as instrumental variables to estimate the association with overall cancer and 22 site-specific cancers among 367 586 UK Biobank participants. A replication analysis was performed using data from the FinnGen consortium (up to 121 579 individuals). There was suggestive evidence that genetic liability to short-sleep duration was associated with higher odds of cancers of the stomach (odds ratio [OR], 2.22; 95% confidence interval [CI], 1.15-4.30;P= .018), pancreas (OR, 2.18; 95% CI, 1.32-3.62;P= .002) and colorectum (OR, 1.48; 95% CI, 1.12-1.95;P= .006), but with lower odds of multiple myeloma (OR, 0.47; 95% CI, 0.22-0.99;P= .047). Suggestive evidence of association of genetic liability to long-sleep duration with lower odds of pancreatic cancer (OR, 0.44; 95% CI, 0.25-0.79;P= .005) and kidney cancer (OR, 0.44; 95% CI, 0.21-0.90;P= .025) was observed. However, none of these associations passed the multiple comparison threshold and two-sample MR analysis using FinnGen data did not confirm these findings. In conclusion, this MR study does not provide strong evidence to support causal associations of sleep duration with risk of overall and site-specific cancers. Further MR studies are required.
  •  
17.
  • Vithayathil, Mathew, et al. (författare)
  • Body size and composition and risk of site-specific cancers in the UK Biobank and large international consortia : A mendelian randomisation study
  • 2021
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 18:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Author summary Why was this study done? The causal relevance of body size and composition as risk factors for specific cancers is unclear based on traditional observational studies. By considering the relationships between genetically predicted values of body size and composition with cancer risk, our estimates are less influenced by confounding variables, and, hence, more reliably reflect the underlying causal relationships between these measures and cancer risk. What did the researchers do and find? We assessed the associations between genetically predicted body mass index (BMI), fat mass index (FMI), fat-free mass index (FFMI), and height with 22 specific cancers in the UK Biobank (UKBB), a population-based sample of the United Kingdom residents. Although genetically predicted height was consistently associated with increased risk of site-specific cancers, genetically predicted BMI was associated with an increased risk of certain digestive system cancers (esophageal, stomach, liver, and pancreas), plus lung and uterine cancer, but a decreased risk of breast and prostate cancer. When dividing cancers into digestive system cancers versus non-digestive system cancers, genetically predicted BMI was associated with increased risk of digestive system cancers, but not associated with non-digestive system cancers. What do these findings mean? Our findings suggest that BMI is a causal risk factor for some cancers, but is not a generic risk factor for all cancers. Body fat may play a role in development of specific cancers and should be studied further to identify future targets to prevent cancer. Public health strategies should focus on reducing obesity as a risk factor for cancer, but should be clear that benefit may be limited to certain cancers. Background Evidence for the impact of body size and composition on cancer risk is limited. This mendelian randomisation (MR) study investigates evidence supporting causal relationships of body mass index (BMI), fat mass index (FMI), fat-free mass index (FFMI), and height with cancer risk. Methods and findings Single nucleotide polymorphisms (SNPs) were used as instrumental variables for BMI (312 SNPs), FMI (577 SNPs), FFMI (577 SNPs), and height (293 SNPs). Associations of the genetic variants with 22 site-specific cancers and overall cancer were estimated in 367,561 individuals from the UK Biobank (UKBB) and with lung, breast, ovarian, uterine, and prostate cancer in large international consortia. In the UKBB, genetically predicted BMI was positively associated with overall cancer (odds ratio [OR] per 1 kg/m(2) increase 1.01, 95% confidence interval [CI] 1.00-1.02; p = 0.043); several digestive system cancers: stomach (OR 1.13, 95% CI 1.06-1.21; p < 0.001), esophagus (OR 1.10, 95% CI 1.03, 1.17; p = 0.003), liver (OR 1.13, 95% CI 1.03-1.25; p = 0.012), and pancreas (OR 1.06, 95% CI 1.01-1.12; p = 0.016); and lung cancer (OR 1.08, 95% CI 1.04-1.12; p < 0.001). For sex-specific cancers, genetically predicted elevated BMI was associated with an increased risk of uterine cancer (OR 1.10, 95% CI 1.05-1.15; p < 0.001) and with a lower risk of prostate cancer (OR 0.97, 95% CI 0.94-0.99; p = 0.009). When dividing cancers into digestive system versus non-digestive system, genetically predicted BMI was positively associated with digestive system cancers (OR 1.04, 95% CI 1.02-1.06; p < 0.001) but not with non-digestive system cancers (OR 1.01, 95% CI 0.99-1.02; p = 0.369). Genetically predicted FMI was positively associated with liver, pancreatic, and lung cancer and inversely associated with melanoma and prostate cancer. Genetically predicted FFMI was positively associated with non-Hodgkin lymphoma and melanoma. Genetically predicted height was associated with increased risk of overall cancer (OR per 1 standard deviation increase 1.09; 95% CI 1.05-1.12; p < 0.001) and multiple site-specific cancers. Similar results were observed in analyses using the weighted median and MR-Egger methods. Results based on consortium data confirmed the positive associations between BMI and lung and uterine cancer risk as well as the inverse association between BMI and prostate cancer, and, additionally, showed an inverse association between genetically predicted BMI and breast cancer. The main limitations are the assumption that genetic associations with cancer outcomes are mediated via the proposed risk factors and that estimates for some lower frequency cancer types are subject to low precision. Conclusions Our results show that the evidence for BMI as a causal risk factor for cancer is mixed. We find that BMI has a consistent causal role in increasing risk of digestive system cancers and a role for sex-specific cancers with inconsistent directions of effect. In contrast, increased height appears to have a consistent risk-increasing effect on overall and site-specific cancers.
  •  
18.
  • Yang, Yaohua, et al. (författare)
  • Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk
  • 2019
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 79:3, s. 505-517
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P < 7.94 x 10(-7). Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. Significance: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.
  •  
19.
  •  
20.
  • Yuan, Shuai, et al. (författare)
  • Causal associations of thyroid function and dysfunction with overall, breast and thyroid cancer : A two-sample Mendelian randomization study
  • 2020
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 147:7, s. 1895-1903
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether thyroid dysfunction plays a causal role in the development of cancer remains inconclusive. We conducted a two-sample Mendelian randomization study to investigate the associations between genetic predisposition to thyroid dysfunction and 22 site-specific cancers. Single-nucleotide polymorphisms associated with four traits of thyroid function were selected from a genome-wide association meta-analysis with up to 72,167 European-descent individuals. Summary-level data for breast cancer and 21 other cancers were extracted from the Breast Cancer Association Consortium (122,977 breast cancer cases and 105,974 controls) and UK Biobank (367,643 individuals). For breast cancer, a meta-analysis was performed using data from both sources. Genetically predicted thyroid dysfunction was associated with breast cancer, with similar patterns of associations in the Breast Cancer Association Consortium and UK Biobank. The combined odds ratios of breast cancer were 0.94 (0.91-0.98; p = 0.007) per genetically predicted one standard deviation increase in TSH levels, 0.96 (0.91-1.00; p = 0.053) for genetic predisposition to hypothyroidism, 1.04 (1.01-1.07; p = 0.005) for genetic predisposition to hyperthyroidism and 1.07 (1.02-1.12; p = 0.003) per genetically predicted one standard deviation increase in free thyroxine levels. Genetically predicted TSH levels and hypothyroidism were inversely with thyroid cancer; the odds ratios were 0.47 (0.30-0.73; p = 0.001) and 0.70 (0.51-0.98; p = 0.038), respectively. Our study provides evidence of a causal association between thyroid dysfunction and breast cancer (mainly ER-positive tumors) risk. The role of TSH and hypothyroidism for thyroid cancer and the associations between thyroid dysfunction and other cancers need further exploration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy