SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karikari Thomas) "

Sökning: WFRF:(Karikari Thomas)

  • Resultat 11-20 av 130
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Ashton, Nicholas J., et al. (författare)
  • Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer's disease
  • 2022
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 76
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Phosphorylated tau (p-tau) epitopes in cerebrospinal fluid (CSF) are accurate biomarkers for a pathological and clinical diagnosis of Alzheimer's disease (AD) and are seen to be increased in preclinical stage of the disease. However, it is unknown if these increases transpire earlier, prior to amyloid-beta (Aβ) positivity as determined by position emission tomography (PET), and if an ordinal sequence of p-tau epitopes occurs at this incipient phase Methods: We measured CSF concentrations of p-tau181, p-tau217 and p-tau231 in 171 participants across the AD continuum who had undergone Aβ ([18F]AZD4694) and tau ([18F]MK6240) position emission tomography (PET) and clinical assessment Findings: All CSF p-tau biomarkers were accurate predictors of cognitive impairment but CSF p-tau217 demonstrated the largest fold-changes in AD patients in comparison to non-AD dementias and cognitively unimpaired individuals. CSF p-tau231 and p-tau217 predicted Aβ and tau to a similar degree but p-tau231 attained abnormal levels first. P-tau231 was sensitive to the earliest changes of Aβ in the medial orbitofrontal, precuneus and posterior cingulate before global Aβ PET positivity was reached Interpretation: We demonstrate that CSF p-tau231 increases early in development of AD pathology and is a principal candidate for detecting incipient Aβ pathology for therapeutic trial application Funding: Canadian Institutes of Health Research (CIHR), Canadian Consortium of Neurodegeneration and Aging, Weston Brain Institute, Brain Canada Foundation, the Fonds de Recherche du Québec. © 2022
  •  
12.
  • Ashton, Nicholas J., et al. (författare)
  • Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer's trial selection and disease monitoring.
  • 2022
  • Ingår i: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:12, s. 2555-2562
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood biomarkers indicative of Alzheimer's disease (AD) pathology are altered in both preclinical and symptomatic stages of the disease. Distinctive biomarkers may be optimal for the identification of AD pathology or monitoring of disease progression. Blood biomarkers that correlate with changes in cognition and atrophy during the course of the disease could be used in clinical trials to identify successful interventions and thereby accelerate the development of efficient therapies. When disease-modifying treatments become approved for use, efficient blood-based biomarkers might also inform on treatment implementation and management in clinical practice. In the BioFINDER-1 cohort, plasma phosphorylated (p)-tau231 and amyloid-β42/40 ratio were more changed at lower thresholds of amyloid pathology. Longitudinally, however, only p-tau217 demonstrated marked amyloid-dependent changes over 4-6years in both preclinical and symptomatic stages of the disease, with no such changes observed in p-tau231, p-tau181, amyloid-β42/40, glial acidic fibrillary protein or neurofilament light. Only longitudinal increases of p-tau217 were also associated with clinical deterioration and brain atrophy in preclinical AD. The selective longitudinal increase of p-tau217 and its associations with cognitive decline and atrophy was confirmed in an independent cohort (Wisconsin Registry for Alzheimer's Prevention). These findings support the differential association of plasma biomarkers with disease development and strongly highlight p-tau217 as a surrogate marker of disease progression in preclinical and prodromal AD, with impact for the development of new disease-modifying treatments.
  •  
13.
  • Ashton, Nicholas J., et al. (författare)
  • Effects of pre-analytical procedures on blood biomarkers for Alzheimer's pathophysiology, glial activation, and neurodegeneration.
  • 2021
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - : Wiley. - 2352-8729. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We tested how tube types (ethylenediaminetetraacetic acid [EDTA], serum, lithium heparin [LiHep], and citrate) and freeze-thaw cycles affect levels of blood biomarkers for Alzheimer's disease (AD) pathophysiology, glial activation, and neuronal injury.Amyloid beta (Aβ)42, Aβ40, phosphorylated tau181 (p-tau181), glial fibrillary acidic protein, total tau (t-tau), neurofilament light, and phosphorylated neurofilament heavy protein were measured using single molecule arrays.LiHep demonstrated the highest mean value for all biomarkers. Tube types were highly correlated for most biomarkers (r>0.95) but gave significantly different absolute concentrations. Weaker correlations between tube types were found for Aβ42/40 (r=0.63-0.86) and serum t-tau (r=0.46-0.64). Freeze-thaw cycles highly influenced levels of serum Aβ and t-tau (P<.0001), and minor decreases in EDTA Aβ40 and EDTA p-tau181 were found after freeze-thaw cycle 4 (P<.05).The same tube type should be used in research studies on blood biomarkers. Individual concentration cut-offs are needed for each tube type in all tested biomarkers despite being highly correlated. Serum should be avoided for Aβ42, Aβ40, and t-tau. Freeze-thaw cycles>3 should be avoided for p-tau181.
  •  
14.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:5, s. 1913-1924
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Direct comparisons of the main blood phosphorylated tau immunoassays in memory clinic populations are needed to understand possible differences. Methods In the BIODEGMAR study, 197 participants presenting with cognitive complaints were classified into an Alzheimer's disease (AD) or a non-AD cerebrospinal fluid (CSF) profile group, according to their amyloid beta 42/ phosphorylated tau (A beta 42/p-tau) ratio. We performed a head-to-head comparison of nine plasma and nine CSF tau immunoassays and determined their accuracy to discriminate abnormal CSF A beta 42/p-tau ratio. Results All studied plasma tau biomarkers were significantly higher in the AD CSF profile group compared to the non-AD CSF profile group and significantly discriminated abnormal CSF A beta 42/p-tau ratio. For plasma p-tau biomarkers, the higher discrimination accuracy was shown by Janssen p-tau217 (r = 0.76; area under the curve [AUC] = 0.96), ADx p-tau181 (r = 0.73; AUC = 0.94), and Lilly p-tau217 (r = 0.73; AUC = 0.94). Discussion Several plasma p-tau biomarkers can be used in a specialized memory clinic as a stand-alone biomarker to detect biologically-defined AD. Highlights Patients with an Alzheimer's disease cerebrospinal fluid (AD CSF) profile have higher plasma phosphorylated tau (p-tau) levels than the non-AD CSF profile group. All plasma p-tau biomarkers significantly discriminate patients with an AD CSF profile from the non-AD CSF profile group. Janssen p-tau217, ADx p-tau181, and Lilly p-tau217 in plasma show the highest accuracy to detect biologically defined AD. Janssen p-tau217, ADx p-tau181, Lilly p-tau217, Lilly p-tau181, and UGot p-tau231 in plasma show performances that are comparable to their CSF counterparts.
  •  
15.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology.
  • 2021
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 141:5, s. 709-724
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantification of phosphorylated tau in biofluids, either cerebrospinal fluid (CSF) or plasma, has shown great promise in detecting Alzheimer's disease (AD) pathophysiology. Tau phosphorylated at threonine 231 (p-tau231) is one such biomarker in CSF but its usefulness as a blood biomarker is currently unknown. Here, we developed an ultrasensitive Single molecule array (Simoa) for the quantification of plasma p-tau231 which was validated in four independent cohorts (n=588) in different settings, including the full AD continuum and non-AD neurodegenerative disorders. Plasma p-tau231 was able to identify patients with AD and differentiate them from amyloid-β negative cognitively unimpaired (CU) older adults with high accuracy (AUC=0.92-0.94). Plasma p-tau231 also distinguished AD patients from patients with non-AD neurodegenerative disorders (AUC=0.93), as well as from amyloid-β negative MCI patients (AUC=0.89). In a neuropathology cohort, plasma p-tau231 in samples taken on avergae 4.2years prior to post-mortem very accurately identified AD neuropathology in comparison to non-AD neurodegenerative disorders (AUC=0.99), this is despite all patients being given an AD dementia diagnosis during life. Plasma p-tau231 was highly correlated with CSF p-tau231, tau pathology as assessed by [18F]MK-6240 positron emission tomography (PET), and brain amyloidosis by [18F]AZD469 PET. Remarkably, the inflection point of plasma p-tau231, increasing as a function of continuous [18F]AZD469 amyloid-β PET standardized uptake value ratio, was shown to be earlier than standard thresholds of amyloid-β PET positivity and the increase of plasma p-tau181. Furthermore, plasma p-tau231 was significantly increased in amyloid-β PET quartiles 2-4, whereas CSF p-tau217 and plasma p-tau181 increased only at quartiles 3-4 and 4, respectively. Finally, plasma p-tau231 differentiated individuals across the entire Braak stage spectrum, including Braak staging from Braak 0 through Braak I-II, which was not observed for plasma p-tau181. To conclude, this novel plasma p-tau231 assay identifies the clinicalstages of ADand neuropathology equally well as plasma p-tau181, but increases earlier, already with subtle amyloid-β deposition, prior to the threshold for amyloid-β PET positivity has been attained, and also in response to early brain tau deposition. Thus, plasma p-tau231 is a promising novel biomarker of emerging AD pathology with the potential to facilitate clinical trials to identify vulnerable populations below PET threshold of amyloid-β positivity or apparent entorhinal tau deposition.
  •  
16.
  • Ashton, Nicholas J., et al. (författare)
  • The validation status of blood biomarkers of amyloid and phospho-tau assessed with the 5-phase development framework for AD biomarkers
  • 2021
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 48, s. 2140-2156
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The development of blood biomarkers that reflect Alzheimer's disease (AD) pathophysiology (phosphorylated tau and amyloid-beta) has offered potential as scalable tests for dementia differential diagnosis and early detection. In 2019, the Geneva AD Biomarker Roadmap Initiative included blood biomarkers in the systematic validation of AD biomarkers. Methods A panel of experts convened in November 2019 at a two-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of blood biomarkers was assessed based on the Biomarker Roadmap methodology and discussed fully during the workshop which also evaluated cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers. Results Plasma p-tau has shown analytical validity (phase 2 primary aim 1) and first evidence of clinical validity (phase 3 primary aim 1), whereas the maturity level for A beta remains to be partially achieved. Full and partial achievement has been assigned to p-tau and A beta, respectively, in their associations to ante-mortem measures (phase 2 secondary aim 2). However, only preliminary evidence exists for the influence of covariates, assay comparison and cut-off criteria. Conclusions Despite the relative infancy of blood biomarkers, in comparison to CSF biomarkers, much has already been achieved for phases 1 through 3 - with p-tau having greater success in detecting AD and predicting disease progression. However, sufficient data about the effect of covariates on the biomarker measurement is lacking. No phase 4 (real-world performance) or phase 5 (assessment of impact/cost) aim has been tested, thus not achieved.
  •  
17.
  • Balogun, W. G., et al. (författare)
  • Plasma biomarkers for neurodegenerative disorders: ready for prime time?
  • 2023
  • Ingår i: Current Opinion in Psychiatry. - 0951-7367. ; 36:2, s. 112-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose of reviewSeveral plasma biomarkers for Alzheimer's disease and related disorders (ADRD) have demonstrated clinical and technical robustness. However, are they ready for clinical implementation? This review critically appraises current evidence for and against the immediate use of plasma biomarkers in clinical care.Recent findingsPlasma biomarkers have significantly improved our understanding of ADRD time-course, risk factors, diagnosis and prognosis. These advances are accelerating the development and in-human testing of therapeutic candidates, and the selection of individuals with subtle biological evidence of disease who fit the criteria for early therapeutic targeting. However, standardized tests and well validated cut-off values are lacking. Moreover, some assays (e.g., plasma Aβ methods) have poor robustness to withstand inevitable day-to-day technical variations. Additionally, recent reports suggest that common comorbidities of aging (e.g., kidney disease, diabetes, hypertension) can erroneously affect plasma biomarker levels, clinical utility and generalizability. Furthermore, it is unclear if health disparities can explain reported racial/ethnic differences in biomarker levels and functions. Finally, current clinically approved plasma methods are more expensive than CSF assays, questioning their cost effectiveness.SummaryPlasma biomarkers have biological and clinical capacity to detect ADRD. However, their widespread use requires issues around thresholds, comorbidities and diverse populations to be addressed. © 2023 Lippincott Williams and Wilkins. All rights reserved.
  •  
18.
  • Balusu, Sriram, et al. (författare)
  • MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer's disease.
  • 2023
  • Ingår i: Science (New York, N.Y.). - 1095-9203. ; 381:6663, s. 1176-1182
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal cell loss is a defining feature of Alzheimer's disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), phosphorylated tau blood biomarkers, and considerable neuronal cell loss. The long noncoding RNA MEG3 was strongly up-regulated in human neurons. This neuron-specific long noncoding RNA is also up-regulated in AD patients. MEG3 expression alone was sufficient to induce necroptosis in human neurons in vitro. Down-regulation of MEG3 and inhibition of necroptosis using pharmacological or genetic manipulation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, or mixed lineage kinase domain-like protein (MLKL) rescued neuronal cell loss in xenografted human neurons. This model suggests potential therapeutic approaches for AD and reveals a human-specific vulnerability to AD.
  •  
19.
  • Bellaver, B., et al. (författare)
  • Astrocyte reactivity influences amyloid-beta effects on tau pathology in preclinical Alzheimer's disease
  • 2023
  • Ingår i: Nature Medicine. - 1078-8956. ; 29:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-sectional and longitudinal analyses of tau pathology in preclinical Alzheimer's disease reveal that tau tangles accumulate as a function of amyloid-beta burden only in individuals positive for an astrocyte reactivity biomarker. An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-beta (A beta)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash A beta effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of A beta with tau phosphorylation in CU individuals. We found that A beta was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast(+)). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of A beta only in CU Ast(+) individuals. Our findings suggest astrocyte reactivity as an important upstream event linking A beta with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.
  •  
20.
  • Bellaver, B., et al. (författare)
  • Blood-brain barrier integrity impacts the use of plasma amyloid-beta as a proxy of brain amyloid-beta pathology
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:9, s. 3815-3825
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION Amyloid-beta (A beta) and tau can be quantified in blood. However, biological factors can influence the levels of brain-derived proteins in the blood. The blood-brain barrier (BBB) regulates protein transport between cerebrospinal fluid (CSF) and blood. BBB altered permeability might affect the relationship between brain and blood biomarkers.METHODS We assessed 224 participants in research (TRIAD, n = 96) and clinical (BIODEGMAR, n = 128) cohorts with plasma and CSF/positron emission tomography A beta, p-tau, and albumin measures.RESULTS Plasma A beta(42/40) better identified CSF A beta(42/40) and A beta-PET positivity in individuals with high BBB permeability. An interaction between plasma A beta(42/40) and BBB permeability on CSF A beta(42/40) was observed. Voxel-wise models estimated that the association of positron emission tomography (PET), with plasma A beta was most affected by BBB permeability in AD-related brain regions. BBB permeability did not significantly impact the relationship between brain and plasma p-tau levels.DISCUSSION These findings suggest that BBB integrity may influence the performance of plasma A beta, but not p-tau, biomarkers in research and clinical settings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 130
Typ av publikation
tidskriftsartikel (127)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (126)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Karikari, Thomas (128)
Blennow, Kaj, 1958 (115)
Zetterberg, Henrik, ... (113)
Ashton, Nicholas J. (97)
Lessa Benedet, André ... (41)
Lantero Rodriguez, J ... (39)
visa fler...
Pascoal, Tharick A (21)
Rosa-Neto, Pedro (21)
Rosa-Neto, P. (17)
Pascoal, T. A. (17)
Snellman, Anniina (16)
Montoliu-Gaya, Laia (15)
Schöll, Michael, 198 ... (15)
Brum, Wagner S. (15)
Gauthier, S (14)
Therriault, J. (14)
Tissot, C. (14)
Suárez-Calvet, Marc (13)
Therriault, Joseph (13)
Gonzalez-Ortiz, Fern ... (13)
Kac, Przemyslaw R. (13)
Simrén, Joel, 1996 (12)
Lussier, F. Z. (12)
Zimmer, E. R. (11)
Stevenson, J (10)
Chamoun, M. (10)
Gauthier, Serge (10)
Ferreira, P. C. L. (10)
Ferrari-Souza, J. P. (10)
Servaes, S. (10)
Rahmouni, N. (10)
Tissot, Cecile (9)
Stevenson, Jenna (9)
González-Ortiz, Fern ... (9)
Bellaver, B (9)
Tudorascu, D. L. (9)
Brinkmalm, Gunnar (8)
Harrison, Peter (8)
Hansson, Oskar (8)
Leffa, D. T. (8)
Villemagne, V. L. (8)
Klunk, W. E. (8)
Emersic, Andreja (8)
Bellaver, Bruna (8)
Aarsland, Dag (7)
Kvartsberg, Hlin, 19 ... (7)
Vanmechelen, E (7)
Vanmechelen, Eugeen (7)
Hye, Abdul (7)
Servaes, Stijn (7)
visa färre...
Lärosäte
Göteborgs universitet (130)
Karolinska Institutet (14)
Lunds universitet (11)
Språk
Engelska (130)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (127)
Naturvetenskap (4)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy