SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khotyaintsev Yuri) "

Sökning: WFRF:(Khotyaintsev Yuri)

  • Resultat 21-30 av 359
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Graham, Daniel B., et al. (författare)
  • Large-Amplitude High-Frequency Waves at Earth's Magnetopause
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:4, s. 2630-2657
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-amplitude waves near the electron plasma frequency are found by the Magnetospheric Multiscale (MMS) mission near Earth's magnetopause. The waves are identified as Langmuir and upper hybrid (UH) waves, with wave vectors either close to parallel or close to perpendicular to the background magnetic field. The waves are found all along the magnetopause equatorial plane, including both flanks and close to the subsolar point. The waves reach very large amplitudes, up to 1Vm(-1), and are thus among the most intense electric fields observed at Earth's magnetopause. In the magnetosphere and on the magnetospheric side of the magnetopause the waves are predominantly UH waves although Langmuir waves are also found. When the plasma is very weakly magnetized only Langmuir waves are likely to be found. Both Langmuir and UH waves are shown to have electromagnetic components, which are consistent with predictions from kinetic wave theory. These results show that the magnetopause and magnetosphere are often unstable to intense wave activity near the electron plasma frequency. These waves provide a possible source of radio emission at the magnetopause.
  •  
22.
  • Graham, Daniel B., et al. (författare)
  • Lower hybrid waves in the ion diffusion and magnetospheric inflow regions
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:1, s. 517-533
  • Tidskriftsartikel (refereegranskat)abstract
    • The role and properties of lower hybrid waves in the ion diffusion region and magnetospheric inflow region of asymmetric reconnection are investigated using the Magnetospheric Multiscale (MMS) mission. Two distinct groups of lower hybrid waves are observed in the ion diffusion region and magnetospheric inflow region, which have distinct properties and propagate in opposite directions along the magnetopause. One group develops near the ion edge in the magnetospheric inflow, where magnetosheath ions enter the magnetosphere through the finite gyroradius effect and are driven by the ion-ion cross-field instability due to the interaction between the magnetosheath ions and cold magnetospheric ions. This leads to heating of the cold magnetospheric ions. The second group develops at the sharpest density gradient, where the Hall electric field is observed and is driven by the lower hybrid drift instability. These drift waves produce cross-field particle diffusion, enabling magnetosheath electrons to enter the magnetospheric inflow region thereby broadening the density gradient in the ion diffusion region.
  •  
23.
  • Johlander, Andreas, 1990-, et al. (författare)
  • Ion Acceleration Efficiency at the Earth's Bow Shock : Observations and Simulation Results
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 914:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Collisionless shocks are some of the most efficient particle accelerators in heliospheric and astrophysical plasmas. Here we study and quantify ion acceleration at Earth's bow shock with observations from NASA's Magnetospheric Multiscale (MMS) satellites and in a global hybrid-Vlasov simulation. From the MMS observations, we find that quasiparallel shocks are more efficient at accelerating ions. There, up to 15% of the available energy goes into accelerating ions above 10 times their initial energy. Above a shock-normal angle of similar to 50 degrees, essentially no energetic ions are observed downstream of the shock. We find that ion acceleration efficiency is significantly lower when the shock has a low Mach number (M ( A ) < 6) while there is little Mach number dependence for higher values. We also find that ion acceleration is lower on the flanks of the bow shock than at the subsolar point regardless of the Mach number. The observations show that a higher connection time of an upstream field line leads to somewhat higher acceleration efficiency. To complement the observations, we perform a global hybrid-Vlasov simulation with realistic solar-wind parameters with the shape and size of the bow shock. We find that the ion acceleration efficiency in the simulation shows good quantitative agreement with the MMS observations. With the combined approach of direct spacecraft observations, we quantify ion acceleration in a wide range of shock angles and Mach numbers.
  •  
24.
  • Johlander, Andreas, et al. (författare)
  • Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft
  • 2016
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 117:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMS's high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.
  •  
25.
  •  
26.
  •  
27.
  • Khotyaintsev, Yu, V, et al. (författare)
  • Density fluctuations associated with turbulence and waves First observations by Solar Orbiter
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The aim of this work is to demonstrate that the probe-to-spacecraft potential measured by RPW on Solar Orbiter can be used to derive the plasma (electron) density measurement, which exhibits both a high temporal resolution and a high level of accuracy. To investigate the physical nature of the solar wind turbulence and waves, we analyze the density and magnetic field fluctuations around the proton cyclotron frequency observed by Solar Orbiter during the first perihelion encounter (similar to 0.5AU away from the Sun). Methods. We used the plasma density based on measurements of the probe-to-spacecraft potential in combination with magnetic field measurements by MAG to study the fields and density fluctuations in the solar wind. In particular, we used the polarization of the wave magnetic field, the phase between the compressible magnetic field and density fluctuations, and the compressibility ratio (the ratio of the normalized density fluctuations to the normalized compressible fluctuations of B) to characterize the observed waves and turbulence. Results. We find that the density fluctuations are 180 degrees out of phase (anticorrelated) with the compressible component of magnetic fluctuations for intervals of turbulence, whereas they are in phase for the circular-polarized waves. We analyze, in detail, two specific events with a simultaneous presence of left- and right-handed waves at di fferent frequencies. We compare the observed wave properties to a prediction of the three-fluid (electrons, protons, and alphas) model. We find a limit on the observed wavenumbers, 10(-6) < k < 7 > 10(-6) m(-1), which corresponds to a wavelength of 7 x 10(6) > lambda > 10(6) m. We conclude that it is most likely that both the leftand right-handed waves correspond to the low-wavenumber part (close to the cut-o ff at Omega(cHe++)) of the proton-band electromagnetic ion cyclotron (left-handed wave in the plasma frame confined to the frequency range Omega(cHe++) < omega < Omega(cp)) waves propagating in the outwards and inwards directions, respectively. The fact that both wave polarizations are observed at the same time and the identified wave mode has a low group velocity suggests that the double-banded events occur in the source regions of the waves.
  •  
28.
  • Khotyaintsev, Yu, V, et al. (författare)
  • Electron Heating by Debye-Scale Turbulence in Guide-Field Reconnection
  • 2020
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 124:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report electrostatic Debye-scale turbulence developing within the diffusion region of asymmetric magnetopause reconnection with amoderate guide field using observations by the Magnetospheric Multiscale mission. We show that Buneman waves and beam modes cause efficient and fast thermalization of the reconnection electron jet by irreversible phase mixing, during which the jet kinetic energy is transferred into thermal energy. Our results show that the reconnection diffusion region in the presence of a moderate guide field is highly turbulent, and that electrostatic turbulence plays an important role in electron heating.
  •  
29.
  • Khotyaintsev, Yuri V., et al. (författare)
  • Energy conversion at dipolarization fronts
  • 2017
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 44:3, s. 1234-1242
  • Tidskriftsartikel (refereegranskat)abstract
    • We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E . j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.
  •  
30.
  • Le Contel, O., et al. (författare)
  • Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:12, s. 12236-12257
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 359
Typ av publikation
tidskriftsartikel (338)
forskningsöversikt (7)
annan publikation (4)
konferensbidrag (4)
doktorsavhandling (4)
licentiatavhandling (2)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (348)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Khotyaintsev, Yuri V ... (285)
Vaivads, Andris (119)
Lindqvist, Per-Arne (112)
Russell, C. T. (110)
Burch, J. L. (102)
Ergun, R. E. (99)
visa fler...
Graham, Daniel B. (98)
Torbert, R. B. (96)
André, Mats (92)
Giles, B. L. (92)
Gershman, D. J. (71)
Khotyaintsev, Yuri (68)
Lavraud, B. (67)
Strangeway, R. J. (66)
Khotyaintsev, Yu. V. (55)
Nakamura, R. (47)
Le Contel, O. (42)
Magnes, W. (42)
Retino, A. (40)
Pollock, C. J. (37)
Saito, Y. (35)
Paterson, W. R. (34)
Dorelli, J. C. (33)
Fu, H. S. (31)
Wilder, F. D. (30)
Baumjohann, W. (29)
Phan, T. D. (29)
Zhou, M. (27)
Fuselier, S. A. (27)
Plaschke, F. (26)
Avanov, L. A. (26)
Maksimovic, M. (25)
Bale, S. D. (25)
Chust, T. (25)
Eastwood, J. P. (25)
Argall, M. R. (24)
Moore, T. E. (24)
Giles, B. (21)
Pollock, C. (20)
Sahraoui, F. (20)
Steinvall, Konrad (20)
Vecchio, A. (19)
Krasnoselskikh, V (19)
Kretzschmar, M. (19)
Soucek, J. (19)
Goodrich, K. A. (19)
Huang, S. Y. (19)
Steller, M. (18)
Norgren, Cecilia (18)
Owen, C. J. (18)
visa färre...
Lärosäte
Uppsala universitet (355)
Kungliga Tekniska Högskolan (200)
Umeå universitet (2)
Språk
Engelska (357)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (345)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy