SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Komorowski Jan) "

Sökning: WFRF:(Komorowski Jan)

  • Resultat 51-60 av 166
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Cavalli, Marco, et al. (författare)
  • A Multi-Omics Approach to Liver Diseases : Integration of Single Nuclei Transcriptomics with Proteomics and HiCap Bulk Data in Human Liver
  • 2020
  • Ingår i: Omics. - : Mary Ann Liebert Inc. - 1536-2310 .- 1557-8100. ; 24:4, s. 180-194
  • Tidskriftsartikel (refereegranskat)abstract
    • The liver is the largest solid organ and a primary metabolic hub. In recent years, intact cell nuclei were used to perform single-nuclei RNA-seq (snRNA-seq) for tissues difficult to dissociate and for flash-frozen archived tissue samples to discover unknown and rare cell subpopulations. In this study, we performed snRNA-seq of a liver sample to identify subpopulations of cells based on nuclear transcriptomics. In 4282 single nuclei, we detected, on average, 1377 active genes and we identified seven major cell types. We integrated data from 94,286 distal interactions (p < 0.05) for 7682 promoters from a targeted chromosome conformation capture technique (HiCap) and mass spectrometry proteomics for the same liver sample. We observed a reasonable correlation between proteomics and in silico bulk snRNA-seq (r = 0.47) using tissue-independent gene-specific protein abundancy estimation factors. We specifically looked at genes of medical importance. The DPYD gene is involved in the pharmacogenetics of fluoropyrimidine toxicity and some of its variants are analyzed for clinical purposes. We identified a new putative polymorphic regulatory element, which may contribute to variation in toxicity. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and we investigated all known risk genes. We identified a complex regulatory landscape for the SLC2A2 gene with 16 candidate enhancers. Three of them harbor somatic motif breaking and other mutations in HCC in the Pan Cancer Analysis of Whole Genomes dataset and are candidates to contribute to malignancy. Our results highlight the potential of a multi-omics approach in the study of human diseases.
  •  
52.
  • Cavalli, Marco, et al. (författare)
  • Single Nuclei Transcriptome Analysis of Human Liver with Integration of Proteomics and Capture Hi-C Bulk Tissue Data
  • Tidskriftsartikel (refereegranskat)abstract
    • The liver is the largest solid organ and a primary metabolic hub. In recent years, intact cell nuclei were used to perform single-nuclei RNA-seq (snRNA-seq) for tissues difficult to dissociate and for flash-frozen archived tissue samples to discover unknown and rare cell sub-populations. In this study, we performed snRNA-seq of a liver sample to identify sub-populations of cells based on nuclear transcriptomics. In 4,282 single nuclei we detected on average 1,377 active genes and we identified seven major cell types. We integrated data from 94,286 distal interactions (p<0.05) for 7,682 promoters from a targeted chromosome conformation capture technique (HiCap) and mass spectrometry (MS) proteomics for the same liver sample. We observed a reasonable correlation between proteomics and in silico bulk snRNA-seq (r=0.47) using tissue-independent gene-specific protein abundancy estimation factors. We specifically looked at genes of medical importance. The DPYD gene is involved in the pharmacogenetics of fluoropyrimidines toxicity and some of its variants are analyzed for clinical purposes. We identified a new putative polymorphic regulatory element, which may contribute to variation in toxicity. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and we investigated all known risk genes. We found a complex regulatory network for the SLC2A2 gene with 16 candidate enhancers. Three of them harbor somatic motif breaking and other mutations in HCC in the Pan Cancer Analysis of Whole Genomes dataset and are candidates to contribute to malignancy. Our results highlight the potential of a multi-omics approach in the study of human diseases.
  •  
53.
  • Cavalli, Marco, et al. (författare)
  • Studies of liver tissue identify functional gene regulatory elements associated to gene expression, type 2 diabetes, and other metabolic diseases
  • 2019
  • Ingår i: Human Genomics. - : Springer Science and Business Media LLC. - 1473-9542 .- 1479-7364. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Genome-wide association studies (GWAS) of diseases and traits have found associations to gene regions but not the functional SNP or the gene mediating the effect. Difference in gene regulatory signals can be detected using chromatin immunoprecipitation and next-gen sequencing (ChIP-seq) of transcription factors or histone modifications by aligning reads to known polymorphisms in individual genomes. The aim was to identify such regulatory elements in the human liver to understand the genetics behind type 2 diabetes and metabolic diseases.Methods: The genome of liver tissue was sequenced using 10X Genomics technology to call polymorphic positions. Using ChIP-seq for two histone modifications, H3K4me3 and H3K27ac, and the transcription factor CTCF, and our established bioinformatics pipeline, we detected sites with significant difference in signal between the alleles.Results:We detected 2329 allele-specific SNPs (AS-SNPs) including 25 associated to GWAS SNPs linked to liver biology, e.g., 4 AS-SNPs at two type 2 diabetes loci. Two hundred ninety-two AS-SNPs were associated to liver gene expression in GTEx, and 134 AS-SNPs were located on 166 candidate functional motifs and most of them in EGR1-binding sites.Conclusions:This study provides a valuable collection of candidate liver regulatory elements for further experimental validation.
  •  
54.
  • Dabrowski, M. J., et al. (författare)
  • 'True' null allele detection in microsatellite loci : a comparison of methods, assessment of difficulties and survey of possible improvements
  • 2015
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 15:3, s. 477-488
  • Tidskriftsartikel (refereegranskat)abstract
    • Null alleles are alleles that for various reasons fail to amplify in a PCR assay. The presence of null alleles in microsatellite data is known to bias the genetic parameter estimates. Thus, efficient detection of null alleles is crucial, but the methods available for indirect null allele detection return inconsistent results. Here, our aim was to compare different methods for null allele detection, to explain their respective performance and to provide improvements. We applied several approaches to identify the true' null alleles based on the predictions made by five different methods, used either individually or in combination. First, we introduced simulated true' null alleles into 240 population data sets and applied the methods to measure their success in detecting the simulated null alleles. The single best-performing method was ML-NullFreq_frequency. Furthermore, we applied different noise reduction approaches to improve the results. For instance, by combining the results of several methods, we obtained more reliable results than using a single one. Rule-based classification was applied to identify population properties linked to the false discovery rate. Rules obtained from the classifier described which population genetic estimates and loci characteristics were linked to the success of each method. We have shown that by simulating true' null alleles into a population data set, we may define a null allele frequency threshold, related to a desired true or false discovery rate. Moreover, using such simulated data sets, the expected null allele homozygote frequency may be estimated independently of the equilibrium state of the population.
  •  
55.
  • Dabrowski, Michal J., et al. (författare)
  • Unveiling new interdependencies between significant DNA methylation sites, gene expression profiles and glioma patients survival
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to find clinically useful prognostic markers for glioma patients' survival, we employed Monte Carlo Feature Selection and Interdependencies Discovery (MCFS-ID) algorithm on DNA methylation (HumanMethylation450 platform) and RNA-seq datasets from The Cancer Genome Atlas (TCGA) for 88 patients observed until death. The input features were ranked according to their importance in predicting patients' longer (400+ days) or shorter (<= 400 days) survival without prior classification of the patients. Interestingly, out of the 65 most important features found, 63 are methylation sites, and only two mRNAs. Moreover, 61 out of the 63 methylation sites are among those detected by the 450 k array technology, while being absent in the HumanMethylation27. The most important methylation feature (cg15072976) overlaps with the RE1 Silencing Transcription Factor (REST) binding site, and was confirmed to intersect with the REST binding motif in human U87 glioma cells. Six additional methylation sites from the top 63 overlap with REST sites. We found that the methylation status of the cg15072976 site affects transcription factor binding in U87 cells in gel shift assay. The cg15072976 methylation status discriminates <= 400 and 400+ patients in an independent dataset from TCGA and shows positive association with survival time as evidenced by Kaplan-Meier plots.
  •  
56.
  •  
57.
  • Diamanti, Klev, 1987- (författare)
  • Integrating multi-omics for type 2 diabetes : Data science and big data towards personalized medicine
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Type 2 diabetes (T2D) is a complex metabolic disease characterized by multi-tissue insulin resistance and failure of the pancreatic β-cells to secrete sufficient amounts of insulin. Cells recruit transcription factors (TF) to specific genomic loci to regulate gene expression that consequently affects the protein and metabolite abundancies. Here we investigated the interplay of transcriptional and translational regulation, and its impact on metabolome and phenome for several insulin-resistant tissues from T2D donors. We implemented computational tools and multi-omics integrative approaches that can facilitate the selection of candidate combinatorial markers for T2D.We developed a data-driven approach to identify putative regulatory regions and TF-interaction complexes. The cell-specific sets of regulatory regions were enriched for disease-related single nucleotide polymorphisms (SNPs), highlighting the importance of such loci towards the genomic stability and the regulation of gene expression. We employed a similar principle in a second study where we integrated single nucleus ribonucleic acid sequencing (snRNA-seq) with bulk targeted chromosome-conformation-capture (HiCap) and mass spectrometry (MS) proteomics from liver. We identified a putatively polymorphic site that may contribute to variation in the pharmacogenetics of fluoropyrimidines toxicity for the DPYD gene. Additionally, we found a complex regulatory network between a group of 16 enhancers and the SLC2A2 gene that has been linked to increased risk for hepatocellular carcinoma (HCC). Moreover, three enhancers harbored motif-breaking mutations located in regulatory regions of a cohort of 314 HCC cases, and were candidate contributors to malignancy.In a cohort of 43 multi-organ donors we explored the alternating pattern of metabolites among visceral adipose tissue (VAT), pancreatic islets, skeletal muscle, liver and blood serum samples. A large fraction of lysophosphatidylcholines (LPC) decreased in muscle and serum of T2D donors, while a large number of carnitines increased in liver and blood of T2D donors, confirming that changes in metabolites occur in primary tissues, while their alterations in serum consist a secondary event. Next, we associated metabolite abundancies from 42 subjects to glucose uptake, fat content and volume of various organs measured by positron emission tomography/magnetic resonance imaging (PET/MRI). The fat content of the liver was positively associated with the amino acid tyrosine, and negatively associated with LPC(P-16:0). The insulin sensitivity of VAT and subcutaneous adipose tissue was positively associated with several LPCs, while the opposite applied to branch-chained amino acids. Finally, we presented the network visualization of a rule-based machine learning model that predicted non-diabetes and T2D in an “unseen” dataset with 78% accuracy.
  •  
58.
  • Diamanti, Klev, et al. (författare)
  • Maps of context-dependent putative regulatory regions and genomic signal interactions
  • 2016
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 44:19, s. 9110-9120
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene transcription is regulated mainly by transcription factors (TFs). ENCODE and Roadmap Epigenomics provide global binding profiles of TFs, which can be used to identify regulatory regions. To this end we implemented a method to systematically construct cell-type and species-specific maps of regulatory regions and TF-TF interactions. We illustrated the approach by developing maps for five human cell-lines and two other species. We detected similar to 144k putative regulatory regions among the human cell-lines, with the majority of them being similar to 300 bp. We found similar to 20k putative regulatory elements in the ENCODE heterochromatic domains suggesting a large regulatory potential in the regions presumed transcriptionally silent. Among the most significant TF interactions identified in the heterochromatic regions were CTCF and the cohesin complex, which is in agreement with previous reports. Finally, we investigated the enrichment of the obtained putative regulatory regions in the 3D chromatin domains. More than 90% of the regions were discovered in the 3D contacting domains. We found a significant enrichment of GWAS SNPs in the putative regulatory regions. These significant enrichments provide evidence that the regulatory regions play a crucial role in the genomic structural stability. Additionally, we generated maps of putative regulatory regions for prostate and colorectal cancer human cell-lines.
  •  
59.
  • Dramiński, Michał, et al. (författare)
  • Discovering Networks of Interdependent Features in High-Dimensional Problems
  • 2016
  • Ingår i: Big Data Analysis. - Cham : Springer. - 9783319269894 ; , s. 285-304
  • Bokkapitel (refereegranskat)abstract
    • The availability of very large data sets in Life Sciences provided earlier by the technological breakthroughs such as microarrays and more recently by various forms of sequencing has created both challenges in analyzing these data as well as new opportunities. A promising, yet underdeveloped approach to Big Data, not limited to Life Sciences, is the use of feature selection and classification to discover interdependent features. Traditionally, classifiers have been developed for the best quality of supervised classification. In our experience, more often than not, rather than obtaining the best possible supervised classifier, the Life Scientist needs to know which features contribute best to classifying observations (objects, samples) into distinct classes and what the interdependencies between the features that describe the observation. Our underlying hypothesis is that the interdependent features and rule networks do not only reflect some syntactical properties of the data and classifiers but also may convey meaningful clues about true interactions in the modeled biological system. In this chapter we develop further our method of Monte Carlo Feature Selection and Interdependency Discovery (MCFS and MCFS-ID, respectively), which are particularly well suited for high-dimensional problems, i.e., those where each observation is described by very many features, often many more features than the number of observations. Such problems are abundant in Life Science applications. Specifically, we define Inter-Dependency Graphs (termed, somewhat confusingly, ID Graphs) that are directed graphs of interactions between features extracted by aggregation of information from the classification trees constructed by the MCFS algorithm. We then proceed with modeling interactions on a finer level with rule networks. We discuss some of the properties of the ID graphs and make a first attempt at validating our hypothesis on a large gene expression data set for CD4+ T-cells. The MCFS-ID and ROSETTA including the Ciruvis approach offer a new methodology for analyzing Big Data from feature selection, through identification of feature interdependencies, to classification with rules according to decision classes, to construction of rule networks. Our preliminary results confirm that MCFS-ID is applicable to the identification of interacting features that are functionally relevant while rule networks offer a complementary picture with finer resolution of the interdependencies on the level of feature-value pairs.
  •  
60.
  • Dramiński, Michał, 1980-, et al. (författare)
  • Monte Carlo feature selection and interdependency discovery in supervised classification
  • 2010
  • Ingår i: Advances in Machine Learning. - Heidelberg : Springer. - 9783642051784
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Applications of machine learning techniques in Life Sciences are the main applications forcing a paradigm shift in the way these techniques are used. Rather than obtaining the best possible supervised classifier, the Life Scientist needs to know which features contribute best to classifying distinct classes and what are the interdependencies between the features. To this end we significantly extend our earlier work [Dramiński et al. (2008)] that introduced an effective and reliable method for ranking features according to their importance for classification. We begin with adding a method for finding a cut-off between informative and non-informative fea- tures and then continue with a development of a methodology and an implementa- tion of a procedure for determining interdependencies between informative features. The reliability of our approach rests on multiple construction of tree classifiers. Essentially, each classifier is trained on a randomly chosen subset of the original data using only a fraction of all of the observed features. This approach is conceptually simple yet computer-intensive. The methodology is validated on a large and difficult task of modelling HIV-1 reverse transcriptase resistance to drugs which is a good example of the aforementioned paradigm shift. We construct a classifier but of the main interest is the identification of mutation points (i.e. features) and their combinations that model drug resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 166
Typ av publikation
tidskriftsartikel (107)
annan publikation (27)
doktorsavhandling (20)
konferensbidrag (8)
bokkapitel (3)
forskningsöversikt (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (111)
övrigt vetenskapligt/konstnärligt (46)
populärvet., debatt m.m. (3)
Författare/redaktör
Komorowski, Jan (148)
Wadelius, Claes (32)
Enroth, Stefan (22)
Diamanti, Klev, 1987 ... (21)
Andersson, Robin (19)
Wadelius, Claes, 195 ... (18)
visa fler...
Wallerman, Ola (14)
Ameur, Adam (13)
Hvidsten, Torgeir R. (13)
Cavalli, Marco (11)
Komorowski, Jan, Pro ... (11)
Piotrowski, Arkadius ... (11)
Pan, Gang (11)
Dumanski, Jan P (10)
Sandgren, Johanna (10)
Bornelöv, Susanne (10)
Rada-Iglesias, Alvar ... (9)
Barrenäs, Fredrik (9)
Umer, Husen Muhammad (9)
de Ståhl, Teresita D ... (8)
Baltzer, Nicholas (8)
Menzel, Uwe (7)
Grabherr, Manfred (7)
Orzechowski Westholm ... (7)
Holmfeldt, Linda (7)
Diamanti, Klev (7)
Ronne, Hans (6)
Bruder, Carl E G (6)
Wikberg, Jarl E. S. (5)
Wikberg, Jarl (5)
Nord, Helena (5)
Kierczak, Marcin, 19 ... (5)
Cavelier, Lucia (4)
Sundström, Christer (4)
Höglund, Martin (4)
Pereira, Maria J., 1 ... (4)
Enroth, Stefan, 1976 ... (4)
Åkerström, Göran (4)
Westin, Gunnar (4)
Feuk, Lars (4)
Skaftason, Aron (4)
Mayrhofer, Markus, 1 ... (4)
Dunham, Ian (4)
Kryshtafovych, Andri ... (4)
Fidelis, Krzysztof (4)
Norgren, Nina (4)
Bornelöv, Susanne, 1 ... (4)
Komorowski, J (4)
Kumar, Chanchal (4)
Sun, Jitong (4)
visa färre...
Lärosäte
Uppsala universitet (162)
Karolinska Institutet (15)
Umeå universitet (7)
Göteborgs universitet (4)
Kungliga Tekniska Högskolan (4)
Linköpings universitet (4)
visa fler...
Lunds universitet (4)
Sveriges Lantbruksuniversitet (3)
Stockholms universitet (1)
visa färre...
Språk
Engelska (162)
Odefinierat språk (3)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (83)
Medicin och hälsovetenskap (53)
Teknik (2)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy