SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krug Norbert) "

Sökning: WFRF:(Krug Norbert)

  • Resultat 11-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Kolmert, Johan, et al. (författare)
  • Urinary Leukotriene E-4 and Prostaglandin D-2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation A Clinical Observational Study
  • 2021
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - NEW YORK, USA : AMER THORACIC SOC. - 1073-449X .- 1535-4970. ; 203:1, s. 37-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: New approaches are needed to guide personalized treatment of asthma. Objectives: To test if urinary eicosanoid metabolites can direct asthma phenotyping. Methods: Urinary metabolites of prostaglandins (PGs), cysteinyl leukotrienes (CysLTs), and isoprostanes were quantified in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy control participants. Validation was performed internally in 302 participants with SA followed up after 12-18 months and externally in 95 adolescents with asthma. Measurement and Main Results: Metabolite concentrations in healthy control participants were unrelated to age, body mass index, and sex, except for the PGE(2) pathway. Eicosanoid concentrations were generally greater in participants with MMA relative to healthy control participants, with further elevations in participants with SA. However, PGE(2) metabolite concentrations were either the same or lower in male nonsmokers with asthma than in healthy control participants. Metabolite concentrations were unchanged in those with asthma who adhered to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas those with SA treated with omalizumab had lower concentrations of LTE4 and the PGD(2) metabolite 2,3-dinor-11 beta-PGF(2 alpha). High concentrations of LTE4 and PGD(2) metabolites were associated with lower lung function and increased amounts of exhaled nitric oxide and eosinophil markers in blood, sputum, and urine in U-BIOARED participants and in adolescents with asthma. These type 2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study and were found to be as sensitive to detect T2 inflammation as the established biomarkers. Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new noninvasive approach for molecular phenotyping of adult and adolescent asthma.
  •  
12.
  • Kuo, Chih-Hsi Scott, et al. (författare)
  • A transcriptome-driven analysis of epithelial brushings and bronchial biopsies to define asthma phenotypes in U-BIOPRED
  • 2017
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - 1073-449X .- 1535-4970. ; 194:4, s. 443-455
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE AND OBJECTIVES: Asthma is a heterogeneous disease driven by diverse immunologic and inflammatory mechanisms. We used transcriptomic profiling of airway tissues to help define asthma phenotypes.METHODS: The transcriptome from bronchial biopsies and epithelial brushings of 107 moderate-to-severe asthmatics were annotated by gene-set variation analysis (GSVA) using 42 gene-signatures relevant to asthma, inflammation and immune function. Topological data analysis (TDA) of clinical and histological data was used to derive clusters and the nearest shrunken centroid algorithm used for signature refinement.RESULTS: 9 GSVA signatures expressed in bronchial biopsies and airway epithelial brushings distinguished two distinct asthma subtypes associated with high expression of T-helper type 2 (Th-2) cytokines and lack of corticosteroid response (Group 1 and Group 3). Group 1 had the highest submucosal eosinophils, high exhaled nitric oxide (FeNO) levels, exacerbation rates and oral corticosteroid (OCS) use whilst Group 3 patients showed the highest levels of sputum eosinophils and had a high BMI. In contrast, Group 2 and Group 4 patients had an 86% and 64% probability of having non-eosinophilic inflammation. Using machine-learning tools, we describe an inference scheme using the currently-available inflammatory biomarkers sputum eosinophilia and exhaled nitric oxide levels along with OCS use that could predict the subtypes of gene expression within bronchial biopsies and epithelial cells with good sensitivity and specificity.CONCLUSION: This analysis demonstrates the usefulness of a transcriptomic-driven approach to phenotyping that segments patients who may benefit the most from specific agents that target Th2-mediated inflammation and/or corticosteroid insensitivity.
  •  
13.
  • Kuo, Chih-Hsi S., et al. (författare)
  • Contribution of airway eosinophils in airway wall remodeling in asthma : Role of MMP-10 and MET
  • 2019
  • Ingår i: Allergy. European Journal of Allergy and Clinical Immunology. - : John Wiley & Sons. - 0105-4538 .- 1398-9995. ; 74:6, s. 1102-1112
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Eosinophils play an important role in the pathophysiology of asthma being implicated in airway epithelial damage and airway wall remodeling. We determined the genes associated with airway remodeling and eosinophilic inflammation in patients with asthma. Methods We analyzed the transcriptomic data from bronchial biopsies of 81 patients with moderate-to-severe asthma of the U-BIOPRED cohort. Expression profiling was performed using Affymetrix arrays on total RNA. Transcription binding site analysis used the PRIMA algorithm. Localization of proteins was by immunohistochemistry. Results Using stringent false discovery rate analysis, MMP-10 and MET were significantly overexpressed in biopsies with high mucosal eosinophils (HE) compared to low mucosal eosinophil (LE) numbers. Immunohistochemical analysis confirmed increased expression of MMP-10 and MET in bronchial epithelial cells and in subepithelial inflammatory and resident cells in asthmatic biopsies. Using less-stringent conditions (raw P-value < 0.05, log2 fold change > 0.5), we defined a 73-gene set characteristic of the HE compared to the LE group. Thirty-three of 73 genes drove the pathway annotation that included extracellular matrix (ECM) organization, mast cell activation, CC-chemokine receptor binding, circulating immunoglobulin complex, serine protease inhibitors, and microtubule bundle formation pathways. Genes including MET and MMP10 involved in ECM organization correlated positively with submucosal thickness. Transcription factor binding site analysis identified two transcription factors, ETS-1 and SOX family proteins, that showed positive correlation with MMP10 and MET expression. Conclusion Pathways of airway remodeling and cellular inflammation are associated with submucosal eosinophilia. MET and MMP-10 likely play an important role in these processes.
  •  
14.
  • Lefaudeux, Diane, et al. (författare)
  • U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics
  • 2017
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 139:6, s. 1797-1807
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Asthma is a heterogeneous disease in which there is a differential response to asthma treatments. This heterogeneity needs to be evaluated so that a personalized management approach can be provided.OBJECTIVES: We stratified patients with moderate-to-severe asthma based on clinicophysiologic parameters and performed an omics analysis of sputum.METHODS: Partition-around-medoids clustering was applied to a training set of 266 asthmatic participants from the European Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes (U-BIOPRED) adult cohort using 8 prespecified clinic-physiologic variables. This was repeated in a separate validation set of 152 asthmatic patients. The clusters were compared based on sputum proteomics and transcriptomics data.RESULTS: Four reproducible and stable clusters of asthmatic patients were identified. The training set cluster T1 consists of patients with well-controlled moderate-to-severe asthma, whereas cluster T2 is a group of patients with late-onset severe asthma with a history of smoking and chronic airflow obstruction. Cluster T3 is similar to cluster T2 in terms of chronic airflow obstruction but is composed of nonsmokers. Cluster T4 is predominantly composed of obese female patients with uncontrolled severe asthma with increased exacerbations but with normal lung function. The validation set exhibited similar clusters, demonstrating reproducibility of the classification. There were significant differences in sputum proteomics and transcriptomics between the clusters. The severe asthma clusters (T2, T3, and T4) had higher sputum eosinophilia than cluster T1, with no differences in sputum neutrophil counts and exhaled nitric oxide and serum IgE levels.CONCLUSION: Clustering based on clinicophysiologic parameters yielded 4 stable and reproducible clusters that associate with different pathobiological pathways.
  •  
15.
  • Perotin-Collard, Jeanne-Marie, et al. (författare)
  • Subtypes of eosinophilic asthma with discrete gene pathway phenotypes
  • 2019
  • Ingår i: European Respiratory Journal. - : European Respiratory Society Journals. - 0903-1936 .- 1399-3003. ; 54
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Blood eosinophil counts ≥0.3x109/L are used to define Type-2, eosinophilic asthma. However, differential responses to T2 biologics of patients with eosinophilic asthma suggests that this may be a heterogeneous phenotype with subsets driven by different molecular mechanisms.Methods: Blood transcriptomic data, acquired from 99 severe asthmatics from the U-BIOPRED study (62% female, mean age 54 yr, 41% on oral steroids), were clustered by topological data analysis and cluster boundaries defined by the MORSE method. Gene pathway signatures were identified by Ingenuity Pathway Analysis.Results: Analysis revealed 3 clusters with different modulated gene pathways, i.e. molecular phenotypes. Subtype 1 had high IFN-γ, low IL5, low IL13 and low IL17 gene expression, with reduced glucocorticoid-induced gene expression. Subtype 2 had low IFNγ, high IL5, high IL13 and low IL17 gene expression. Subtype 3 had low IFNγ, high IL5, high IL13 and high IL17 gene expression. Pathway analysis suggested a strong steroid response in Subtypes 2 and 3. Clinically, the three clusters were not different in respect of age, gender, prevalence of atopy, blood or sputum eosinophil counts. Subtype 3 was characterized by high neutrophil counts in blood and bronchial epithelium, frequent sinus disease and asthma exacerbations, OCS treatment, low allergic sensitisation and low exhaled NO. Subtype 1 was characterized by high exhaled NO and more frequent IgE therapy.Conclusion: This study suggests that eosinophilic severe asthma (≥0.3x109/L) can be stratified further into 3 subtypes with distinct gene expression profiles that could be developed as molecular diagnostic biomarkers to guide treatment and thereby improve patient outcomes.
  •  
16.
  • Rothenfusser, Simon, et al. (författare)
  • CpG-A and CpG-B oligonucleotides differentially enhance human peptide-specific primary and memory CD8+ T-cell responses in vitro.
  • 2004
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 103:6, s. 2162-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Two distinct types of CpG oligodeoxynucleotide (ODN) have been identified that differ in their capacity to stimulate antigen-presenting cells: CpG-A induces high amounts of interferon-alpha (IFN-alpha) and IFN-beta in plasmacytoid dendritic cells (PDCs), whereas CpG-B induces PDC maturation and is a potent activator of B cells but stimulates only small amounts of IFN-alpha and IFN-beta. Here we examined the ability of these CpG ODNs to enhance peptide-specific CD8+ T-cell responses in human peripheral blood mononuclear cells (PBMCs). The frequency of influenza matrix-specific "memory" CD8+ T cells was increased by both types of CpG ODN, whereas the frequency of Melan-A specific "naive" CD8+ T cells increased on stimulation with CpG-B but not with CpG-A. The presence of PDCs in PBMCs was required for this CpG ODN-mediated effect. The expanded cells were cytotoxic and produced IFN- on peptide restimulation. Soluble factors induced by CpG-A but not CpG-B increased the granzyme-B content and cytotoxicity of established CD8+ T-cell clones, each of which was IFN-alpha/-beta dependent. In conclusion, CpG-B seems to be superior for priming CD8+ T-cell responses, and CpG-A selectively enhances memory CD8+ T-cell responses and induces cytotoxicity. These results demonstrate distinct functional properties of CpG-A and CpG-B with regard to CD8 T cells.
  •  
17.
  • Schofield, James P. R., et al. (författare)
  • Topological data analysis (TDA) of U-BIOPRED paediatric peripheral blood gene expression identified asthma phenotypes characterised by alternative splicing of glucocorticoid receptor (GR) mRNA
  • 2018
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 52
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Molecular stratification of childhood asthma could enable targeted therapy.Aims: Unbiased analysis of gene expression in paediatric severe (SA) and moderate/mild asthma (MA) blood samples to identify sub-phenotypes.Methods: Transcriptomic profiling by microarray analysis of blood from the U-BIOPRED paediatric cohort (Fleming ERJ 2015), pre- and school-age children, (SApre, n=62; MApre, n=42; SAsc, n=75 and MAsc, n=37). Topological data analysis (TDA) was used for unbiased clustering.Results: Sub-phenotypes, P1, P2, P3 and P4 were identified and are highlighted in the TDA network in the figure and a heatmap of selected variables. P1 (38% of the cohort, median 11 yrs) was characterised by low expression of glucocorticoid receptor (GR) mRNA splice variant with a long 3’ UTR (q = 2.43E-17), but no significant difference in the expression of glucocorticoid receptor (GR) mRNA splice variant with a short 3’ UTR. In P1, COX2 expression was up (q = 1.89E-06) and IFN-γ was down (q = 5.61E-06), characteristics of a decreased steroid response.Conclusion: Unbiased analysis of U-BIOPRED paediatric peripheral blood gene expression identified a sub-phenotype, P1, with an inhibited steroid response. P1 is associated with low expression of a splice variant of GR with a long 3’ UTR.
  •  
18.
  • Wilson, Susan J., et al. (författare)
  • Airway Elastin is increased in severe asthma and relates to proximal wall area : histological and computed tomography findings from the U-BIOPRED severe asthma study
  • 2021
  • Ingår i: Clinical and Experimental Allergy. - : John Wiley & Sons. - 0954-7894 .- 1365-2222. ; 51:2, s. 296-304
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Airway remodelling, which may include goblet cell hyperplasia / hypertrophy, changes in epithelial integrity, accumulation of extracellular matrix components, smooth muscle hypertrophy and thickening of the lamina reticularis, is a feature of severe asthma and contributes to the clinical phenotype.Objective: Within the U-BIOPRED severe asthma study, we have assessed histological elements of airway remodelling and their relationship to computed tomography (CT) measures of proximal airway dimensions.Methods: Bronchial biopsies were collected from two severe asthma groups, one non-smoker (SAn, n = 28) and one current/ex-smoker (SAs/ex, n = 13), and a mild-moderate asthma group (MMA, n = 28) classified and treated according to GINA guidelines, plus a healthy control group (HC, n = 33). Movat's pentachrome technique was used to identify mucin, elastin and total collagen in these biopsies. The number of goblet cells (mucin+) was counted as a percentage of the total number of epithelial cells and the percentage mucin epithelial area measured. The percentage area of elastic fibres and total collagen within the submucosa was also measured, and the morphology of the elastic fibres classified. Participants in the asthma groups also had a CT scan to assess large airway morphometry.Results: The submucosal tissue elastin percentage was higher in both severe asthma groups (16.1% SAn, 18.9% SAs/ex) compared with the HC (9.7%) but did not differ between asthma groups. There was a positive relationship between elastin and airway wall area measured by CT (n = 18-20, rho=0.544, p = 0.024), which also related to an increase in elastic fibres with a thickened lamellar morphological appearance. Mucin epithelial area and total collagen were not different between the four groups. Due to small numbers of suitable CT scans, it was not feasible to compare airway morphometry between the asthma groups.Conclusion: These findings identify a link between extent of elastin deposition and airway wall thickening in severe asthma.
  •  
19.
  • Wilson, Susan Jane, et al. (författare)
  • Periostin expression in the U-BIOPRED severe asthma bronchoscopy cohort
  • 2018
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 52
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Periostin (POSTN) is secreted basolaterally by bronchial epithelial cells in asthma and is expressed in the extracellular matrix where it is thought to play a role in fibrosis and is associated with airway eosinophilia.In this study we have assessed the protein expression of POSTN in bronchial biopsies by immunohistochemistry, in serum by the Elecsys Periostin Immunoassay and measured gene expression by Affymetrix arrays in bronchial biopsies, bronchial brushings and in sputum in the U-BIOPRED severe asthma study in the bronchoscopy sub-cohort, which included 4 groups; severe non-smoker asthmatics (SAns), current / ex-smoker severe asthmatics (SAs), mild-moderate asthmatics (MMA) and non-asthmatic healthy controls (HC).Subepithelial protein expression in the bronchial biopsies was higher (p=0.02) in SAns, 9.2% (IQR 5.8-12.6)(n=44) compared to SAs 6.2% (3-9.2)(n=16), and in MMA 11% (7.5-12.6)(n=32) compared to SAs (p=0.002) or HC 7.1% (5.5-10.3)(p=0.01)(n=39). There was no difference between SAns and MMA. Gene expression was higher in biopsies from SAns (n=30), -0.044 (IQR -0.425-0.508), compared to both the SAs (n=9), -0.274 (-0.590-0.200), (p=0.02) and HC (n=21), -0.377 (-0.583-0.125), (p=0.008), but similar in MMA. There was no difference between the groups in POSTN serum levels or in gene expression in bronchial brushings or sputum.In asthmatics, the biopsy protein expression correlated with the biopsy gene expression, and both correlated with eosinophils numbers in the biopsies and blood, exhaled NO, and thickness of the lamina reticularis.These results highlight the potential relevance of tissue POSTN to asthma pathophysiology however, this does not appear to be reflected by serum POSTN measures.
  •  
20.
  • Yasinska, Valentyna, et al. (författare)
  • Low levels of endogenous anabolic androgenic steroids in females with severe asthma taking corticosteroids
  • 2023
  • Ingår i: ERJ Open Research. - : European Respiratory Society. - 2312-0541. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Patients with severe asthma are dependent upon treatment with high doses of inhaled corticosteroids (ICS) and often also oral corticosteroids (OCS). The extent of endogenous androgenic anabolic steroid (EAAS) suppression in asthma has not previously been described in detail. The objective of the present study was to measure urinary concentrations of EAAS in relation to exogenous corticosteroid exposure.Methods: Urine collected at baseline in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease outcomes) study of severe adult asthmatics (SA, n=408) was analysed by quantitative mass spectrometry. Data were compared to that of mild-to-moderate asthmatics (MMA, n=70) and healthy subjects (HC, n=98) from the same study.Measurements and main results: The concentrations of urinary endogenous steroid metabolites were substantially lower in SA than in MMA or HC. These differences were more pronounced in SA patients with detectable urinary OCS metabolites. Their dehydroepiandrosterone sulfate (DHEA-S) concentrations were <5% of those in HC, and cortisol concentrations were below the detection limit in 75% of females and 82% of males. The concentrations of EAAS in OCS-positive patients, as well as patients on high-dose ICS only, were more suppressed in females than males (p<0.05). Low levels of DHEA were associated with features of more severe disease and were more prevalent in females (p<0.05). The association between low EAAS and corticosteroid treatment was replicated in 289 of the SA patients at follow-up after 12–18 months.Conclusion: The pronounced suppression of endogenous anabolic androgens in females might contribute to sex differences regarding the prevalence of severe asthma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy