SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Löndahl Jakob) "

Sökning: WFRF:(Löndahl Jakob)

  • Resultat 31-40 av 279
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Alsved, Malin, et al. (författare)
  • SARS-CoV-2 in aerosol particles exhaled from COVID-19 infected patients during breathing, talking and singing
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • In the beginning of the COVID-19 pandemic, several super spreader events occurred during singing in choirs, which lead to an increased attention to airborne transmission of SARS-CoV-2, the virus causing COVID-19. Since then, aerosol generation from singing has been studied in more detail, however, only from healthy subjects. In this study, we collected aerosol particles in the exhaled breath of 40 COVID-19 infected patients during breathing, talking and singing, respectively, and analysed the samples for detection of SARS-CoV-2.MethodPatients that were contacted by the COVID-19 testing service due to a positive test result were asked to volunteer for the study. A team of researchers drove a small truck hosting a mobile laboratory to the home address of the patient to perform exhaled breath aerosol collection using a condensational particle collector (BioSpot, Aerosol Devices) and a two-stage cyclone sampler (NIOSH bc-251, Tisch Environmental). Samples were collected for 10 min each when the patient was breathing, talking and singing, respectively.All samples were stored at -80°C until RNA extraction and analysis by reverse transcription quantitative polymerase chain reaction (RT-qPCR) targeting the N-gene.ResultsA first screening of air samples collected with the BioSpot showed that SARS-CoV-2 could be detected in the exhaled aerosols from three of nine patients during singing or talking. Two of these samples contained 103 and 104 viral RNA copies, corresponding to a viral emission rate of approximately 4 and 25 viruses per second, respectively. Samples from the remaining 31 patients are to be analysed during the spring. We hope to contribute to quantifying and understanding the Covid-19 transmission via the airborne route.This study was approved by the Swedish Ethics Review Authority (2020-07103). This work was supported by AFA Insurances and the Swedish Research Council FORMAS.
  •  
32.
  • Alsved, Malin, et al. (författare)
  • SARS-CoV-2 in aerosol particles exhaled from COVID-19 infected patients during breathing, talking and singing
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • In the beginning of the COVID-19 pandemic, several super spreader events occurred during choir singing, which lead to an increased attention to airborne transmission of SARS-CoV-2. Since then, aerosol generation from singing has been studied in detail, however, mainly from healthy subjects. In this study, we collected aerosol particles in the exhaled breath of 38 COVID-19 infected patients during breathing, talking and singing, respectively, and analyzed the samples for detection of SARS-CoV-2.MethodPatients that were contacted by the COVID-19 testing service due to a positive test result early in the phase of their infection (median 2, range: 0-6 days from symptom onset) were asked to volunteer for the study. A team of researchers drove a small truck hosting a mobile laboratory to the home address of the patient to perform exhaled breath aerosol collection using a condensational particle collector (BioSpot, Aerosol Devices) and a two-stage cyclone sampler (NIOSH bc-251, Tisch Environmental). Samples were collected for 10 min each when the patients were breathing, talking and singing, respectively. In addition, patient samples from nasopharynx and saliva were collected, and patients filled out a questionnaire about symptoms. All samples were stored at -80 °C until RNA extraction and analysis by reverse transcription quantitative polymerase chain reaction (RT-qPCR) targeting the N-gene.ResultsA first preliminary screening of air samples collected with the BioSpot showed that SARS-CoV-2 could be detected in the exhaled aerosols from 14 of 38 (37%) patients during respiratory activities. 50% of patients in the early phase of the infection, day 0-1 from symptom onset, emitted detectable levels of airborne SARS-CoV-2 RNA, 35% of patients on day 2-3, and 0% of patients on day 4-6. The highest viral RNA concentrations in aerosol samples were found in those collected during singing. Further analysis is ongoing and we hope that our results will contribute to quantifying and understanding the Covid-19 transmission via the airborne route.This study was approved by the Swedish Ethics Review Authority (2020-07103). This work was supported by AFA Insurances and the Swedish Research Council FORMAS.
  •  
33.
  • Alsved, Malin, et al. (författare)
  • SARS-CoV-2 in exhaled aerosol particles from covid-19 cases and its association to household transmission
  • 2022
  • Ingår i: Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. - : Oxford University Press (OUP). - 1537-6591. ; 75:1, s. 50-56
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Covid-19 transmission via exhaled aerosol particles has been considered an important route for the spread of infection, especially during super-spreading events involving loud talking or singing. However, no study has previously linked measurements of viral aerosol emissions to transmission rates.METHODS: During Feb-Mar 2021, covid-19 cases that were close to symptom onset were visited with a mobile laboratory for collection of exhaled aerosol particles during breathing, talking and singing, respectively, and of nasopharyngeal and saliva samples. Aerosol samples were collected using a BioSpot-VIVAS and a NIOSH bc-251 two-stage cyclone, and all samples were analyzed by RT-qPCR for SARS-CoV-2 RNA detection. We compared transmission rates between households with aerosol-positive and aerosol-negative index cases.RESULTS: SARS-CoV-2 RNA was detected in at least one aerosol sample from 19 of 38 (50%) included cases. The odds ratio of finding positive aerosol samples decreased with each day from symptom onset (OR 0.55, 95CI 0.30-1.0, p=0.049). The highest number of positive aerosol samples were from singing, 16 (42%), followed by talking, 11 (30%), and the least from breathing, 3 (8%). Index cases were identified for 13 households with 31 exposed contacts. Higher transmission rates were observed in households with aerosol-positive index cases, 10/16 infected (63%), compared to households with aerosol-negative index cases, 4/15 infected (27%) (Chi-square test, p=0.045).CONCLUSIONS: Covid-19 cases were more likely to exhale SARS-CoV-2-containing aerosol particles close to symptom onset and during singing or talking as compared to breathing. This study supports that individuals with SARS-CoV-2 in exhaled aerosols are more likely to transmit covid-19.
  •  
34.
  • Alsved, Malin, et al. (författare)
  • Size distribution of exhaled aerosol particles containing SARS-CoV-2 RNA
  • 2023
  • Ingår i: Infectious Diseases. - : Informa UK Limited. - 2374-4235 .- 2374-4243. ; 55:2, s. 158-163
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: SARS-CoV-2 in exhaled aerosols is considered an important contributor to the spread of COVID-19. However, characterizing the size distribution of virus-containing aerosol particles has been challenging as high concentrations of SARS-CoV-2 in exhaled air is mainly present close to symptom onset. We present a case study of a person with COVID-19 who was able to participate in extensive measurements of exhaled aerosols already on the day of symptom onset and then for the following three days. Methods: Aerosol collection was performed using an eight-stage impactor while the subject was breathing, talking and singing, for 30 min each, once every day. In addition, nasopharyngeal samples, saliva samples, room air samples and information on symptom manifestations were collected every day. Samples were analyzed by RT-qPCR for detection of SARS-CoV-2 RNA. Results: SARS-CoV-2 RNA was detected in seven of the eight particle size fractions, from 0.34 to >8.1 µm, with the highest concentrations found in 0.94–2.8 µm particles. The concentration of SARS-CoV-2 RNA was highest on the day of symptom onset, and declined for each day thereafter. Conclusion: Our data showed that 90% of the exhaled SARS-CoV-2 RNA was found in aerosol particles <4.5 µm, indicating the importance of small particles for the transmission of COVID-19 close to symptom onset. These results are important for our understanding of airborne transmission, for developing accurate models and for selecting appropriate mitigation strategies.
  •  
35.
  • Alsved, Malin, et al. (författare)
  • Sources of Airborne Norovirus in Hospital Outbreaks
  • 2020
  • Ingår i: Clinical Infectious Diseases. - : Oxford University Press (OUP). - 1537-6591 .- 1058-4838. ; 70:10, s. 2023-2028
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Noroviruses are the major cause of viral gastroenteritis. Disease transmission is difficult to prevent and outbreaks in healthcare facilities commonly occur. Contact with infected persons and contaminated environments are believed to be the main routes of transmission. However, noroviruses have recently been found in aerosols and airborne transmission has been suggested. The aim of our study was to investigate associations between symptoms of gastroenteritis and presence of airborne norovirus, and to investigate the size of norovirus carrying particles.METHODS: Air sampling was repeatedly performed close to 26 patients with norovirus infections. Samples were analysed for norovirus RNA by RT-qPCR. The times since the patients' last episodes of vomiting and diarrhoea were recorded. Size separating aerosol particle collection was also performed in ward corridors.RESULTS: Norovirus RNA was found in 21 (24%) of 86 air samples from 10 different patients. Only air samples during outbreaks, or before a succeeding outbreak, tested positive for norovirus RNA. Airborne norovirus RNA was also strongly associated with a shorter time period since the last vomiting episode (odds ratio 8.1, p=0.04 within 3 hours since the last vomiting episode). The concentration of airborne norovirus ranged from 5-215 copies/m3, and detectable amounts of norovirus RNA were found in particles <0.95 µm and >4.51 µm.CONCLUSIONS: The results suggest that recent vomiting is the major source of airborne norovirus and imply a connection between airborne norovirus and outbreaks. The presence of norovirus RNA in submicrometre particles indicates that airborne transmission can be an important transmission route.
  •  
36.
  •  
37.
  • Andersen, Christina, et al. (författare)
  • Inhalation and dermal uptake of particle and gas phase phthalates - A human chamber exposure study
  • 2018
  • Ingår i: 15th Conference of the International Society of Indoor Air Quality and Climate, INDOOR AIR 2018. - 9781713826514
  • Konferensbidrag (refereegranskat)abstract
    • We have exposed sixteen test subjects to particle and gas phase phthalates in the controlled chamber exposure study. Deuterium labelled phthalates were used to generate particle D4-DEHP (di(2-ethylhexyl) phthalate) and gas phase D4-DEP (diethyl phthalate) for exposures scenarios allowed studying the dermal only and combined inhalational and dermal uptake. Metabolites were measured in urine samples before and after three hours of exposure. The inhalation was the dominant route of uptake for both DEHP and DEP in this study design and exposure settings. Larger uptake of DEP compared to DEHP both via inhalation and dermal uptake was observed. Dermal uptake of DEHP was not observed in this study. Inhalational urinary excretion factors of the metabolites were found to be 0.73 for DEHP and 0.53 for DEP. This study also highlights the importance of taking into consideration the deposited dose of inhaled particles in studies of uptake of particles.
  •  
38.
  • Andersen, Christina, et al. (författare)
  • Inhalation and Dermal Uptake of Particle and Gas-phase Phthalates - A Human Exposure Study
  • 2018
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 1520-5851 .- 0013-936X. ; 52:21, s. 12792-12800
  • Tidskriftsartikel (refereegranskat)abstract
    • Phthalates are ubiquitous in indoor environments, which raises concern about their endocrine disrupting properties. However, studies of human uptake from airborne exposure are limited. We studied the inhalation uptake and dermal uptake by air-to-skin transfer with clean clothing as a barrier of two deuterium-labelled airborne phthalates: particle-phase D4-DEHP (di-(2-ethylhexyl)phthalate) and gas-phase D4-DEP (diethyl phthalate). Sixteen participants, wearing trousers and long-sleeved shirts, were under controlled conditions exposed to airborne phthalates in four exposure scenarios: dermal uptake alone, and combined inhalation+dermal uptake of both phthalates. The results showed an average uptake of D4-DEHP by inhalation of 0.0014±0.00088 (µg kg-1 bw)/(µg m-3)/h. No dermal uptake of D4-DEHP was observed during the 3 hour exposure with clean clothing. The deposited dose of D4-DEHP accounted for 26% of the total inhaled D4-DEHP mass. For D4-DEP, the average uptake by inhalation+dermal was 0.0067±0.0045 and 0.00073±0.00051 (µg kg-1 bw)/(µg m-3)/h for dermal uptake. Urinary excretion factors of metabolites after inhalation were estimated to 0.69 for D4-DEHP and 0.50 for D4-DEP. Under the described settings, the main uptake of both phthalates was through inhalation. The results demonstrate the differences in uptake of gas and particles, and highlights the importance of considering the deposited dose in particle uptake studies.
  •  
39.
  • Anund Vogel, Jonas, et al. (författare)
  • Buildings post corona
  • 2023
  • Ingår i: The REHVA European HVAC Journal. - 1307-3729. ; 59:2, s. 19-21
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • Buildings Post Corona is a Swedish collaborative research project between Chalmers, KTH Royal Institute of Technology, Lund, and Umeå Universities. The project supports the building sector in designing and maintaining sustainable buildings with a healthy and good indoor environment. The COVID-19 crisis has stressed the importance and urge of this research.The scope of the project is to develop a methodology for the operation and design of buildings with an indoor environment that meets future health and climate challenges. The project’s overall goal is to establish an interdisciplinary platform to document existing experiences and knowledge and to gain new knowledge required for good building design and operation.
  •  
40.
  • Anund Vogel, Jonas, et al. (författare)
  • Enbart avstånd och handhygien räcker inte
  • 2023
  • Ingår i: Fastighetstidningen. - 0348-5552.
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • I denna debattartikel lyfter sex forskare frågan att myndigheter och branschorganisationer delvis gav olika råd kring åtgärder för att begränsa risken för smittspridning inomhus. För att klara nästa pandemi krävs bättre samordning av riktlinjer kring ventilation och luftkvalitet.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 279
Typ av publikation
konferensbidrag (135)
tidskriftsartikel (92)
annan publikation (41)
bokkapitel (4)
forskningsöversikt (3)
rapport (1)
visa fler...
doktorsavhandling (1)
licentiatavhandling (1)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (199)
populärvet., debatt m.m. (59)
övrigt vetenskapligt/konstnärligt (21)
Författare/redaktör
Löndahl, Jakob (279)
Swietlicki, Erik (82)
Pagels, Joakim (64)
Alsved, Malin (55)
Bohgard, Mats (50)
Rissler, Jenny (41)
visa fler...
Medstrand, Patrik (39)
Wollmer, Per (37)
Gudmundsson, Anders (34)
Fraenkel, Carl-Johan (34)
Massling, Andreas (32)
Wierzbicka, Aneta (32)
Jakobsson, Jonas (29)
Thuresson, Sara (29)
Boman, Christoffer (22)
Widell, Anders (21)
Isaxon, Christina (21)
Blomberg, Anders (20)
Sandström, Thomas (19)
Loft, Steffen (18)
Hussein, Tareq (15)
Nicklasson, Hanna (14)
Kristensson, Adam (14)
Santl-Temkiv, Tina (14)
Aaltonen, H. Laura (12)
Nielsen, Jörn (11)
Dahl, Andreas (10)
Roldin, Pontus (10)
Petersson Sjögren, M ... (9)
Eriksson, Axel (9)
Svenningsson, Birgit ... (9)
Fors, Erik (9)
Nygren, David (8)
Svensson, Tobias (8)
Ramstorp, Matts (8)
Ketzel, Matthias (8)
Assarsson, Eva (8)
Sadrizadeh, Sasan (7)
Dierschke, Katrin (7)
Stroh, Emilie (6)
Civilis, Anette (6)
Ekolind, Peter (6)
Sasinovich, Sviatasl ... (6)
Diaz, Sandra (5)
Tammelin, Ann (5)
Erichsen Andersson, ... (5)
Larsson, P A (5)
Bengtsson, Agneta (5)
Sjögren, Staffan (5)
Boor, Brandon E. (5)
visa färre...
Lärosäte
Lunds universitet (275)
Karolinska Institutet (9)
Göteborgs universitet (8)
Umeå universitet (7)
RISE (7)
Kungliga Tekniska Högskolan (3)
visa fler...
Stockholms universitet (3)
Uppsala universitet (2)
Chalmers tekniska högskola (2)
visa färre...
Språk
Engelska (218)
Svenska (61)
Forskningsämne (UKÄ/SCB)
Teknik (125)
Medicin och hälsovetenskap (107)
Naturvetenskap (106)
Humaniora (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy