SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lagerquist E) "

Sökning: WFRF:(Lagerquist E)

  • Resultat 11-20 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Börjesson, Anna E, et al. (författare)
  • The role of activation functions 1 and 2 of estrogen receptor-alpha for the effects of estradiol and selective estrogen receptor modulators in male mice
  • 2013
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 28:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Estradiol (E2) is important for male skeletal health and the effect of E2 is mediated via estrogen receptor (ER)-. This was demonstrated by the findings that men with an inactivating mutation in aromatase or a nonfunctional ER had osteopenia and continued longitudinal growth after sexual maturation. The aim of the present study was to evaluate the role of different domains of ER for the effects of E2 and selective estrogen receptor modulators (SERMs) on bone mass in males. Three mouse models lacking either ERAF-1 (ERAF-10), ERAF-2 (ERAF-20), or the total ER (ER/) were orchidectomized (orx) and treated with E2 or placebo. E2 treatment increased the trabecular and cortical bone mass and bone strength, whereas it reduced the thymus weight and bone marrow cellularity in orx wild type (WT) mice. These parameters did not respond to E2 treatment in orx ER/ or ERAF-20 mirx ERAF-10 mice were tissue-dependent, with a clear response in cortical bone parameters and bone marrow cellularity, but no response in trabecular bone. To determine the role of ERAF-1 for the effects of SERMs, we treated orx WT and ERAF-10 mice with raloxifene (Ral), lasofoxifene (Las), bazedoxifene (Bza), or vehicle. These SERMs increased total body areal bone mineral density (BMD) and trabecular volumetric BMD to a similar extent in orx WT mice. Furthermore, only Las increased cortical thickness significantly and only Bza increased bone strength significantly. However, all SERMs showed a tendency toward increased cortical bone parameters. Importantly, all SERM effects were absent in the orx ERAF-10 mice. In conclusion, ERAF-2 is required for the estrogenic effects on all evaluated parameters, whereas the role of ERAF-1 is tissue-specific. All evaluated effects of Ral, Las and Bza are dependent on a functional ERAF-1. Our findings might contribute to the development of bone-specific SERMs in males. (c) 2013 American Society for Bone and Mineral Research.
  •  
12.
  • Börjesson, Anna E, et al. (författare)
  • The role of estrogen receptor-alpha in growth plate cartilage for longitudinal bone growth.
  • 2010
  • Ingår i: Journal of bone and mineral research. - : Wiley. - 1523-4681 .- 0884-0431. ; 25:12, s. 2414-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens enhance skeletal growth during early sexual maturation while high estradiol levels during late puberty result in growth plate fusion in humans. Although the growth plates do not fuse directly after sexual maturation in rodents, a reduction in growth plate height is seen by treatment with a high dose of estradiol. It is unknown whether the effects of estrogens on skeletal growth are mediated directly via estrogen receptors (ERs) in growth plate cartilage and/or indirectly via other mechanisms such as the GH/IGF-I axis. To determine the role of ERalpha in growth plate cartilage for skeletal growth, we developed a mouse model with cartilage-specific inactivation of ERalpha. Although mice with total ERalpha inactivation displayed affected longitudinal bone growth associated with alterations in the GH/IGF-I axis, the skeletal growth was normal during sexual maturation in mice with cartilage-specific ERalpha inactivation. High dose estradiol treatment of adult mice reduced the growth plate height as a consequence of attenuated proliferation of growth plate chondrocytes in control mice but not in cartilage-specific ERalpha(-/-) mice. Adult cartilage-specific ERalpha(-/-) mice continued to grow after four months of age while growth was limited in control mice, resulting in increased femur length in one-year-old cartilage-specific ERalpha(-/-) mice compared with control mice. We conclude that during early sexual maturation ERalpha in growth plate cartilage is not important for skeletal growth. In contrast, it is essential for high dose estradiol to reduce the growth plate height in adult mice and for reduction of longitudinal bone growth in elderly mice. (c) 2010 American Society for Bone and Mineral Research.
  •  
13.
  • Börjesson, Anna E, et al. (författare)
  • The role of estrogen receptor α in the regulation of bone and growth plate cartilage.
  • 2013
  • Ingår i: Cellular and molecular life sciences : CMLS. - : Springer Science and Business Media LLC. - 1420-9071 .- 1420-682X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens are important endocrine regulators of skeletal growth and maintenance in both females and males. Studies have demonstrated that the estrogen receptor (ER)-α is the main mediator of these estrogenic effects in bone. Therefore, estrogen signaling via ERα is a target both for affecting longitudinal bone growth and bone remodeling. However, treatment with estradiol (E2) leads to an increased risk of side effects such as venous thromboembolism and breast cancer. Thus, an improved understanding of the signaling pathways of ERα will be essential in order to find better bone specific treatments with minimal adverse effects for different estrogen-related bone disorders. This review summarizes the recent data regarding the intracellular signaling mechanisms, in vivo, mediated by the ERα activation functions (AFs), AF-1 and AF-2, and the effect on bone, growth plate and other estrogen responsive tissues. In addition, we review the recent cell-specific ERα-deleted mouse models lacking ERα specifically in neuronal cells or growth plate cartilage. The newly characterized signaling pathways of estrogen, described in this review, provide a better understanding of the ERα signaling pathways, which may facilitate the design of new, bone-specific treatment strategies with minimal adverse effects.
  •  
14.
  • Colldén, Hannah, et al. (författare)
  • Dehydroepiandrosterone Supplementation Results in Varying Tissue-specific Levels of Dihydrotestosterone in Male Mice
  • 2022
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 163:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Dehydroepiandrosterone (DHEA), an adrenal androgen precursor, can be metabolized in target tissues into active sex steroids. It has been proposed that DHEA supplementation might result in restoration of physiological local sex steroid levels, but knowledge on the effect of DHEA treatment on local sex steroid levels in multiple tissues is lacking. To determine the effects of DHEA on tissue-specific levels of sex steroids, we treated orchiectomized (ORX) male mice with DHEA for 3 weeks and compared them with vehicle-treated ORX mice and gonadal intact mice. Intra-tissue levels of sex steroids were analyzed in reproductive organs (seminal vesicles, prostate, m. levator ani), major body compartments (white adipose tissue, skeletal muscle, and brain), adrenals, liver, and serum using a sensitive and validated gas chromatography-mass spectrometry method. DHEA treatment restored levels of both testosterone (T) and dihydrotestosterone (DHT) to approximately physiological levels in male reproductive organs. In contrast, this treatment did not increase DHT levels in skeletal muscle or brain. In the liver, DHEA treatment substantially increased levels of T (at least 4-fold) and DHT (+536%, P < 0.01) compared with vehicle-treated ORX mice. In conclusion, we provide a comprehensive map of the effect of DHEA treatment on intra-tissue sex steroid levels in ORX mice with a restoration of physiological levels of androgens in male reproductive organs while DHT levels were not restored in the skeletal muscle or brain. This, and the unexpected supraphysiological androgen levels in the liver, may be a cause for concern considering the uncontrolled use of DHEA.
  •  
15.
  • Engdahl, Cecilia, 1983, et al. (författare)
  • Amelioration of collagen-induced arthritis and immune-associated bone loss through signaling via estrogen receptor alpha, and not estrogen receptor beta or G protein-coupled receptor 30.
  • 2010
  • Ingår i: Arthritis and rheumatism. - : Wiley. - 0004-3591 .- 1529-0131. ; 62:2, s. 524-33
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The effects of estrogen may be exerted via the nuclear estrogen receptors (ERs) ERalpha or ERbeta or via the recently proposed transmembrane estrogen receptor G protein-coupled receptor 30 (GPR-30). The purpose of this study was to elucidate the ER specificity for the ameliorating effects of estrogen on arthritis and bone loss in a model of postmenopausal rheumatoid arthritis (RA). METHODS: Female DBA/1 mice underwent ovariectomy or sham operation, and type II collagen-induced arthritis was induced. Mice were treated subcutaneously 5 days/week with the specific agonists propylpyrazoletriol (PPT; for ERalpha), diarylpropionitrile (DPN; for ERbeta), G1 (for GPR-30), or with a physiologic dose of estradiol. Clinical arthritis scores were determined continuously. At termination of the study, bone mineral density (BMD) was analyzed, paws were collected for histologic assessment, serum was analyzed for cytokines and markers of bone and cartilage turnover, and bone marrow was subjected to fluorescence-activated cell sorting. RESULTS: Treatment with PPT as well as estradiol dramatically decreased the frequency and severity of arthritis. Furthermore, estradiol and PPT treatment resulted in preservation of bone and cartilage, as demonstrated by increased BMD and decreased serum levels of bone resorption markers and cartilage degradation markers, whereas no effect was seen after DPN or G1 treatment. CONCLUSION: In a well-established model of postmenopausal RA, ERalpha, but not ERbeta or GPR-30 signaling, was shown to ameliorate the disease and the associated development of osteoporosis. Since long-term treatment with estrogen has been associated with significant side effects, increased knowledge about the mechanisms behind the beneficial effects of estrogen is useful in the search for novel treatments of postmenopausal RA.
  •  
16.
  •  
17.
  • Farman, Helen H., 1983, et al. (författare)
  • Membrane estrogen receptor alpha is essential for estrogen signaling in the male skeleton
  • 2018
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 239:3, s. 303-312
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of estrogen receptor alpha (ER alpha) for the regulation of bone mass in males is well established. ERa mediates estrogenic effects both via nuclear and membraneinitiated ER alpha (mER alpha) signaling. The role of mERa signaling for the effects of estrogen on bone in male mice is unknown. To investigate the role of mERa signaling, we have used mice (Nuclear-Only-ER; NOER) with a point mutation (C451A), which results in inhibited trafficking of ER alpha to the plasma membrane. Gonadal-intact male NOER mice had a significantly decreased total body areal bone mineral density (aBMD) compared to WT littermates at 3, 6 and 9 months of age as measured by dual-energy X-ray absorptiometry (DEXA). High-resolution microcomputed tomography (mu CT) analysis of tibia in 3-month-old males demonstrated a decrease in cortical and trabecular thickness in NOER mice compared to WT littermates. As expected, estradiol (E2) treatment of orchidectomized (ORX) WT mice increased total body aBMD, trabecular BV/TV and cortical thickness in tibia compared to placebo treatment. E2 treatment increased these skeletal parameters also in ORX NOER mice. However, the estrogenic responses were significantly decreased in ORX NOER mice compared with ORX WT mice. In conclusion, mER alpha is essential for normal estrogen signaling in both trabecular and cortical bone in male mice. Increased knowledge of estrogen signaling mechanisms in the regulation of the male skeleton may aid in the development of new treatment options for male osteoporosis.
  •  
18.
  • Gustafsson, Karin L., 1987, et al. (författare)
  • A tissue-specific role of membrane-initiated ERα signaling for the effects of SERMs
  • 2022
  • Ingår i: Journal of Endocrinology. - 0022-0795. ; 253:2, s. 75-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To dete rmine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451 A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradi ol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mER α-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were abse nt in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in th e skeleton are mERα- dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrati ng mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mER α signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manne r. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.
  •  
19.
  • Gustafsson, Karin L., 1987, et al. (författare)
  • The role of membrane ER alpha signaling in bone and other major estrogen responsive tissues
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen receptor a (ER alpha) signaling leads to cellular responses in several tissues and in addition to nuclear ER alpha-mediated effects, membrane ER alpha (mER alpha) signaling may be of importance. To elucidate the significance, in vivo, of mER alpha signaling in multiple estrogen-responsive tissues, we have used female mice lacking the ability to localize ER alpha to the membrane due to a point mutation in the palmitoylation site (C451A), so called Nuclear-Only-ER (NOER) mice. Interestingly, the role of mER alpha signaling for the estrogen response was highly tissue-dependent, with trabecular bone in the axial skeleton being strongly dependent (>80% reduction in estrogen response in NOER mice), cortical and trabecular bone in long bones, as well as uterus and thymus being partly dependent (40-70% reduction in estrogen response in NOER mice) and effects on liver weight and total body fat mass being essentially independent of mER alpha (<35% reduction in estrogen response in NOER mice). In conclusion, mER alpha signaling is important for the estrogenic response in female mice in a tissue-dependent manner. Increased knowledge regarding membrane initiated ER alpha actions may provide means to develop new selective estrogen receptor modulators with improved profiles.
  •  
20.
  • Iravani, M., et al. (författare)
  • Effects of the selective GPER1 agonist G1 on bone growth
  • 2019
  • Ingår i: Endocrine Connections. - 2049-3614. ; 8:9, s. 1302-1309
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens may affect bone growth locally or systemically via the known estrogen receptors ESR1, ESR2 and G protein-coupled estrogen receptor 1 (GPER1). Mouse and human growth plate chondrocytes have been demonstrated to express GPER1 and ablation of this receptor increased bone length in mice. Therefore, GPER1 is an attractive target for therapeutic modulation of bone growth, which has never been explored. To investigate the effects of activated GPER1 on the growth plate, we locally exposed mouse metatarsal bones to different concentrations of the selective GPER1 agonist G1 for 14 days ex vivo. The results showed that none of the concentrations of G1 had any direct effect on metatarsal bone growth when compared to control. To evaluate if GPER1 stimulation may systemically modulate bone growth, ovariectomized C57BL/6 mice were treated with G1 or beta-estradiol (E2). Similarly, G1 did not influence tibia and femur growth in treated mice. As expected, E2 treatment suppressed bone growth in vivo. We conclude that ligand stimulation of GPER1 does not influence bone growth in mice.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 32
Typ av publikation
tidskriftsartikel (30)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ohlsson, Claes, 1965 (25)
Börjesson, Anna E (17)
Windahl, Sara H, 197 ... (15)
Movérare-Skrtic, Sof ... (14)
Lagerquist, Marie K (14)
Engdahl, Cecilia, 19 ... (12)
visa fler...
Lagerquist, Marie (12)
Sjögren, Klara, 1970 (12)
Farman, Helen H., 19 ... (9)
Henning, Petra, 1974 (9)
Chambon, P. (7)
Carlsten, Hans, 1954 (7)
Islander, Ulrika, 19 ... (7)
Koskela, A (7)
Tuukkanen, J (7)
Krust, A (7)
Wu, Jianyao (7)
Gustafsson, Karin L. ... (6)
Poutanen, Matti (5)
Antal, MC (5)
Savendahl, L (4)
Stubelius, Alexandra ... (4)
Chambon, Pierre (4)
Karimian, E (4)
Vandenput, Liesbeth, ... (3)
Koskela, Antti (3)
Tuukkanen, Juha (3)
Lerner, Ulf H (3)
Andersson, Annica, 1 ... (3)
Ryberg, Henrik, 1971 (3)
Ohlsson, C. (3)
Kindblom, Jenny, 197 ... (3)
Nilsson, Karin H. (3)
Antal, M. C. (3)
Gustafsson, J. A. (2)
Törnqvist, Anna E (2)
Levin, E (2)
Grahnemo, Louise (2)
Tivesten, Åsa, 1969 (2)
Engdahl, C. (2)
Scheffler, Julia M. (2)
Lagerquist, E. (2)
Windahl, SH (2)
Shao, Linus Ruijin, ... (2)
Borjesson, AE (2)
Eriksson, EE (2)
Lagerquist, MK (2)
Nilsson, Maria E. (2)
Windahl, S. H. (2)
Ryberg, H. (2)
visa färre...
Lärosäte
Göteborgs universitet (26)
Karolinska Institutet (7)
Uppsala universitet (2)
Lunds universitet (2)
Umeå universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (32)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (27)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy