SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lagerquist E) "

Sökning: WFRF:(Lagerquist E)

  • Resultat 21-30 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Jiang, Yiwen, et al. (författare)
  • Membrane estrogen receptor alpha signaling modulates the sensitivity to estradiol treatment in a dose- and tissue- dependent manner
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Estradiol (E2) affects both reproductive and non-reproductive tissues, and the sensitivity to different doses of E2 varies between tissues. Membrane estrogen receptor alpha (mER alpha)-initiated signaling plays a tissue-specific role in mediating E2 effects, however, it is unclear if mER alpha signaling modulates E2 sensitivity. To determine this, we treated ovariectomized C451A females, lacking mER alpha signaling, and wildtype (WT) littermates with physiological (0.05 mu g/mouse/day (low); 0.6 mu g/mouse/day (medium)) or supraphysiological (6 mu g/mouse/day (high)) doses of E2 (17 beta-estradiol-3-benzoate) for three weeks. Low-dose treatment increased uterus weight in WT, but not C451A mice, while non-reproductive tissues (gonadal fat, thymus, trabecular and cortical bone) were unaffected in both genotypes. Medium-dose treatment increased uterus weight and bone mass and decreased thymus and gonadal fat weights in WT mice. Uterus weight was also increased in C451A mice, but the response was significantly attenuated (- 85%) compared to WT mice, and no effects were triggered in non-reproductive tissues. High-dose treatment effects in thymus and trabecular bone were significantly blunted (- 34% and - 64%, respectively) in C451A compared to WT mice, and responses in cortical bone and gonadal fat were similar between genotypes. Interestingly, the high dose effect in uterus was enhanced (+ 26%) in C451A compared to WT mice. In conclusion, loss of mER alpha signaling reduces the sensitivity to physiological E2 treatment in both non-reproductive tissues and uterus. Furthermore, the E2 effect after high-dose treatment in uterus is enhanced in the absence of mER alpha, suggesting a protective effect of mER alpha signaling in this tissue against supraphysiological E2 levels.
  •  
22.
  • Lagerquist, Marie K, et al. (författare)
  • Reduction of Mature B Cells and Immunoglobulins Results in Increased Trabecular Bone
  • 2022
  • Ingår i: Jbmr Plus. - : Wiley. - 2473-4039. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation has a significant effect on bone remodeling and can result in bone loss via increased stimulation of osteoclasts. Activated immunoglobulins, especially autoantibodies, can increase osteoclastogenesis and are associated with pathological bone loss. Whether immunoglobulins and mature B lymphocytes are important for general bone architecture has not been completely determined. Here we demonstrate, using a transgenic mouse model, that reduction of mature B cells and immunoglobulins leads to increased trabecular bone mass compared to wild-type (WT) littermate controls. This bone effect is associated with a decrease in the number of osteoclasts and reduced bone resorption, despite decreased expression of osteoprotegerin. We also demonstrate that the reduction of mature B cells and immunoglobulins do not prevent bone loss caused by estrogen deficiency or arthritis compared to WT littermate controls. In conclusion, the reduction of mature B cells and immunoglobulins results in disturbed regulation of trabecular bone turnover in healthy conditions but is dispensable for pathological bone loss. (c) 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
  •  
23.
  • Movérare-Skrtic, Sofia, et al. (författare)
  • The bone-sparing effects of estrogen and WNT16 are independent of each other
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:48, s. 14972-14977
  • Tidskriftsartikel (refereegranskat)abstract
    • Wingless-type MMTV integration site family (WNT)16 is a key regulator of bone mass with high expression in cortical bone, and Wnt16-/- mice have reduced cortical bone mass. As Wnt16 expression is enhanced by estradiol treatment, we hypothesized that the bone-sparing effect of estrogen in females isWNT16-dependent. This hypothesis was tested in mechanistic studies using two genetically modified mouse models with either constantly high osteoblastic Wnt16 expression or no Wnt16 expression. We developed a mouse model with osteoblast-specific Wnt16 overexpression (Obl-Wnt16). These mice had several-fold elevated Wnt16 expression in both trabecular and cortical bone compared with wild type (WT) mice. Obl- Wnt16 mice displayed increased total body bone mineral density (BMD), surprisingly caused mainly by a substantial increase in trabecular bone mass, resulting in improved bone strength of vertebrae L3. Ovariectomy (ovx) reduced the total body BMD and the trabecular bone mass to the same degree in Obl-Wnt16 mice and WT mice, suggesting that the bone-sparing effect of estrogen is WNT16-independent. However, these bone parameters were similar in ovx Obl- Wnt16 mice and sham operated WT mice. The role of WNT16 for the bone-sparing effect of estrogen was also evaluated in Wnt16-/- mice. Treatment with estradiol increased the trabecular and cortical bone mass to a similar extent in both Wnt16-/- and WT mice. In conclusion, the bone-sparing effects of estrogen and WNT16 are independent of each other. Furthermore, loss of endogenous WNT16 results specifically in cortical bone loss, whereas overexpression of WNT16 surprisingly increases mainly trabecular bone mass. WNT16- targeted therapies might be useful for treatment of postmenopausal trabecular bone loss.
  •  
24.
  • Movérare-Skrtic, Sofia, et al. (författare)
  • The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified.
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 111:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-2(0)) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-2(0) mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-2(0) mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist.
  •  
25.
  • Niklasson, Bo, et al. (författare)
  • Prenatal viral exposure followed by adult stress produces glucose intolerance in a mouse model
  • 2006
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 49:9, s. 2192-2199
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: It has been suggested that the uterine environment may influence metabolic disease occurring later in adult life, and that adult stress may promote disease outcome. Using a mouse model, we tested whether in utero exposure to Ljungan virus (LV) followed by adult exposure to stress produces diabetes. The influence of the timing of viral exposure over the course of pregnancy was also tested. Materials and methods: Pregnant CD-1 mice were exposed i.p. to LV on pregnancy days 4, 8, 12 or 17. Adult male mice from these pregnancies were stressed by being kept in shared cages. Stress only, LV exposure in utero only, and no-stress/no virus exposure groups were also followed. Outcome variables included bodyweight, epididymal fat weight, baseline glucose, glucose tolerance tests (60 and 120 min) and serum insulin. Results: We demonstrated that male mice developed a type 2-like diabetes, including obesity, as adults if infected during pregnancy with LV. Diabetes at the age of 11 weeks was more severe in mice whose mothers were infected earlier than in those whose mothers were infected later in pregnancy. Only animals infected in utero and kept under stress developed diabetes; infection or stress alone did not cause disease. Conclusions/interpretation: This work demonstrates that a type 2 diabetes-like disease can be virus-induced in a mouse model. Early in utero viral insults can set the stage for disease occurring during adult life, but the final manifestation of diabetes is dependent on the combination of early viral exposure and stress in adult life.
  •  
26.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Estrogen receptor-α expression in neuronal cells affects bone mass.
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 109:3, s. 983-988
  • Tidskriftsartikel (refereegranskat)abstract
    • It has generally been assumed that bone mass is controlled by endocrine mechanisms and the local bone environment. Recent findings demonstrate that central pathways are involved in the regulation of bone mass. Estrogen is involved in the regulation of bone homeostasis and the CNS is also a target for estrogen actions. The aim of this study was to investigate in vivo the role of central estrogen receptor-α (ERα) expression for bone mass. Nestin-Cre mice were crossed with ERα(flox) mice to generate mice lacking ERα expression specifically in nervous tissue (nestin-ERα(-/-)). Bone mineral density was increased in both the trabecular and cortical bone compartments in nestin-ERα(-/-) mice compared with controls. Femoral bone strength was increased in nestin-ERα(-/-) mice, as demonstrated by increased stiffness and maximal load of failure. The high bone mass phenotype in nestin-ERα(-/-) mice was mainly caused by increased bone formation. Serum leptin levels were elevated as a result of increased leptin expression in white adipose tissue (WAT) and slightly increased amount of WAT in nestin-ERα(-/-) mice. Leptin receptor mRNA levels were reduced in the hypothalamus but not in bone. In conclusion, inactivation of central ERα signaling results in increased bone mass, demonstrating that the balance between peripheral stimulatory and central inhibitory ERα actions is important for the regulation of bone mass. We propose that the increased bone mass in nestin-ERα(-/-) mice is mediated via decreased central leptin sensitivity and thereby increased secretion of leptin from WAT, which, in turn, results in increased peripheral leptin-induced bone formation.
  •  
27.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Inducible Wnt16 inactivation: WNT16 regulates cortical bone thickness in adult mice.
  • 2018
  • Ingår i: The Journal of endocrinology. - 1479-6805. ; 237:2, s. 113-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Substantial progress has been made in the therapeutic reduction of vertebral fracture risk in patients with osteoporosis, but non-vertebral fracture risk has been improved only marginally. Human genetic studies demonstrate that the WNT16 locus is a major determinant of cortical bone thickness and non-vertebral fracture risk and mouse models with life-long Wnt16 inactivation revealed that WNT16 is a key regulator of cortical thickness. These studies, however, could not exclude that the effect of Wnt16 inactivation on cortical thickness might be caused by early developmental and/or growth effects. To determine the effect of WNT16 specifically on adult cortical bone homeostasis, Wnt16 was conditionally ablated in young adult and old mice through tamoxifen-inducible Cre-mediated recombination using CAG-Cre-ER; Wnt16flox/flox (Cre-Wnt16flox/flox) mice. First, 10-week-old Cre-Wnt16flox/flox and Wnt16flox/flox littermate control mice were treated with tamoxifen. Four weeks later, Wnt16 mRNA levels in cortical bone were reduced and cortical thickness in femur was decreased in Cre-Wnt16flox/flox mice compared to Wnt16flox/flox mice. Then, inactivation of Wnt16 in 47-week-old mice (evaluated four weeks later) resulted in a reduction of Wnt16 mRNA levels, cortical thickness and cortical bone strength with no effect on trabecular bone volume fraction. Mechanistic studies demonstrated that the reduced cortical bone thickness was caused by a combination of increased bone resorption and reduced periosteal bone formation. In conclusion, WNT16 is a crucial regulator of cortical bone thickness in young adult and old mice. We propose that new treatment strategies targeting the adult regulation of WNT16 might be useful to reduce fracture risk at cortical bone sites.
  •  
28.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Phosphorylation site S122 in estrogen receptor α has a tissue-dependent role in female mice
  • 2020
  • Ingår i: FASEB Journal. - 0892-6638 .- 1530-6860. ; 34, s. 15991-16002
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen treatment increases bone mass and reduces fat mass but is associated with adverse effects in postmenopausal women. Knowledge regarding tissue-specific estrogen signaling is important to aid the development of new tissue-specific treatments. We hypothesized that the posttranslational modification phosphorylation in estrogen receptor alpha (ERα) may modulate ERα activity in a tissue-dependent manner. Phosphorylation of site S122 in ERα has been shown in vitro to affect ERα activity, but the tissue-specific role in vivo is unknown. We herein developed and phenotyped a novel mouse model with a point mutation at the phosphorylation site 122 in ERα (S122A). Female S122A mice had increased fat mass and serum insulin levels but unchanged serum sex steroid levels, uterus weight, bone mass, thymus weight, and lymphocyte maturation compared to WT mice. In conclusion, phosphorylation site S122 in ERα has a tissue-dependent role with an impact specifically on fat mass in female mice. This study is the first to demonstrate in vivo that a phosphorylation site in a transactivation domain in a nuclear steroid receptor modulates the receptor activity in a tissue-dependent manner.
  •  
29.
  • Vanderschueren, Dirk, et al. (författare)
  • Sex steroid actions in male bone.
  • 2014
  • Ingår i: Endocrine reviews. - : The Endocrine Society. - 1945-7189 .- 0163-769X. ; 35:6, s. 906-60
  • Forskningsöversikt (refereegranskat)abstract
    • Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority.
  •  
30.
  • Windahl, Sara H, 1971, et al. (författare)
  • Estrogen receptor-alpha in osteocytes is important for trabecular bone formation in male mice
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424. ; 110:6, s. 2294-2299
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone-sparing effect of estrogen in both males and females is primarily mediated via estrogen receptor-alpha (ER alpha), encoded by the Esr1 gene. ER alpha in osteoclasts is crucial for the trabecular bone-sparing effect of estrogen in females, but it is dispensable for trabecular bone in male mice and for cortical bone in both genders. We hypothesized that ER alpha in osteocytes is important for trabecular bone in male mice and for cortical bone in both males and females. Dmp1-Cre mice were crossed with ER alpha(flox/flox) mice to generate mice lacking ER alpha protein expression specifically in osteocytes (Dmp1-ER alpha(-/-)). Male Dmp1-ER alpha(-/-) mice displayed a substantial reduction in trabecular bone volume (-20%, P < 0.01) compared with controls. Dynamic histomorphometry revealed reduced bone formation rate (-45%, P < 0.01) but the number of osteoclasts per bone surface was unaffected in the male Dmp1-ER alpha(-/-) mice. The male Dmp1-ER alpha(-/-) mice had reduced expression of several osteoblast/osteocyte markers in bone, including Runx2, Sp7, and Dmp1 (P < 0.05). Gonadal intact Dmp1-ER alpha(-/-) female mice had no significant reduction in trabecular bone volume but ovariectomized Dmp1-ER alpha(-/-) female mice displayed an attenuated trabecular bone response to supraphysiological E2 treatment. Dmp1-ER alpha(-/-) mice of both genders had unaffected cortical bone. In conclusion, ER alpha in osteocytes regulates trabecular bone formation and thereby trabecular bone volume in male mice but it is dispensable for the trabecular bone in female mice and the cortical bone in both genders. We propose that the physiological trabecular bone-sparing effect of estrogen is mediated via ER alpha in osteocytes in males, but via ER alpha in osteoclasts in females.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 32
Typ av publikation
tidskriftsartikel (30)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ohlsson, Claes, 1965 (25)
Börjesson, Anna E (17)
Windahl, Sara H, 197 ... (15)
Movérare-Skrtic, Sof ... (14)
Lagerquist, Marie K (14)
Engdahl, Cecilia, 19 ... (12)
visa fler...
Lagerquist, Marie (12)
Sjögren, Klara, 1970 (12)
Farman, Helen H., 19 ... (9)
Henning, Petra, 1974 (9)
Chambon, P. (7)
Carlsten, Hans, 1954 (7)
Islander, Ulrika, 19 ... (7)
Koskela, A (7)
Tuukkanen, J (7)
Krust, A (7)
Wu, Jianyao (7)
Gustafsson, Karin L. ... (6)
Poutanen, Matti (5)
Antal, MC (5)
Savendahl, L (4)
Stubelius, Alexandra ... (4)
Chambon, Pierre (4)
Karimian, E (4)
Vandenput, Liesbeth, ... (3)
Koskela, Antti (3)
Tuukkanen, Juha (3)
Lerner, Ulf H (3)
Andersson, Annica, 1 ... (3)
Ryberg, Henrik, 1971 (3)
Ohlsson, C. (3)
Kindblom, Jenny, 197 ... (3)
Nilsson, Karin H. (3)
Antal, M. C. (3)
Gustafsson, J. A. (2)
Törnqvist, Anna E (2)
Levin, E (2)
Grahnemo, Louise (2)
Tivesten, Åsa, 1969 (2)
Engdahl, C. (2)
Scheffler, Julia M. (2)
Lagerquist, E. (2)
Windahl, SH (2)
Shao, Linus Ruijin, ... (2)
Borjesson, AE (2)
Eriksson, EE (2)
Lagerquist, MK (2)
Nilsson, Maria E. (2)
Windahl, S. H. (2)
Ryberg, H. (2)
visa färre...
Lärosäte
Göteborgs universitet (26)
Karolinska Institutet (7)
Uppsala universitet (2)
Lunds universitet (2)
Umeå universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (32)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (27)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy