SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Landen M.) "

Sökning: WFRF:(Landen M.)

  • Resultat 41-50 av 374
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Hibar, D. P., et al. (författare)
  • Subcortical volumetric abnormalities in bipolar disorder
  • 2016
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 21:12, s. 1710-1716
  • Tidskriftsartikel (refereegranskat)abstract
    • Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case-control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen's d=-0.232; P=3.50 × 10 -7) and thalamus (d=-0.148; P=4.27 × 10 -3) and enlarged lateral ventricles (d=-0.260; P=3.93 × 10 -5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons. © 2016 Macmillan Publishers Limited, part of Springer Nature.
  •  
42.
  • Li, M, et al. (författare)
  • Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, hippocampal structure and function, and bipolar disorder susceptibility.
  • 2014
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 19:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a polygenic disorder that shares substantial genetic risk factors with major depressive disorder (MDD). Genetic analyses have reported numerous BD susceptibility genes, while some variants, such as single-nucleotide polymorphisms (SNPs) in CACNA1C have been successfully replicated, many others have not and subsequently their effects on the intermediate phenotypes cannot be verified. Here, we studied the MDD-related gene CREB1 in a set of independent BD sample groups of European ancestry (a total of 64888 subjects) and identified multiple SNPs significantly associated with BD (the most significant being SNP rs6785[A], P=6.32 × 10−5, odds ratio (OR)=1.090). Risk SNPs were then subjected to further analyses in healthy Europeans for intermediate phenotypes of BD, including hippocampal volume, hippocampal function and cognitive performance. Our results showed that the risk SNPs were significantly associated with hippocampal volume and hippocampal function, with the risk alleles showing a decreased hippocampal volume and diminished activation of the left hippocampus, adding further evidence for their involvement in BD susceptibility. We also found the risk SNPs were strongly associated with CREB1 expression in lymphoblastoid cells (P<0.005) and the prefrontal cortex (P<1.0 × 10−6). Remarkably, population genetic analysis indicated that CREB1 displayed striking differences in allele frequencies between continental populations, and the risk alleles were completely absent in East Asian populations. We demonstrated that the regional prevalence of the CREB1 risk alleles in Europeans is likely caused by genetic hitchhiking due to natural selection acting on a nearby gene. Our results suggest that differential population histories due to natural selection on regional populations may lead to genetic heterogeneity of susceptibility to complex diseases, such as BD, and explain inconsistencies in detecting the genetic markers of these diseases among different ethnic populations.
  •  
43.
  •  
44.
  • Li, M., et al. (författare)
  • Impact of a cis-associated gene expression SNP on chromosome 20q11.22 on bipolar disorder susceptibility, hippocampal structure and cognitive performance
  • 2016
  • Ingår i: British Journal of Psychiatry. - : Royal College of Psychiatrists. - 0007-1250 .- 1472-1465. ; 208:2, s. 128-137
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Bipolar disorder is a highly heritable polygenic disorder. Recent enrichment analyses suggest that there may be true risk variants for bipolar disorder in the expression quantitative trait loci (eQTL) in the brain. We sought to assess the impact of eQTL variants on bipolar disorder risk by combining data from both bipolar disorder genome-wide association studies (GWAS) and brain eQTL. To detect single nucleotide polymorphisms (SNPs) that influence expression levels of genes associated with bipolar disorder, we jointly analysed data from a bipolar disorder GWAS (7481 cases and 9250 controls) and a genome-wide brain (cortical) eQTL (193 healthy controls) using a Bayesian statistical method, with independent follow-up replications. The identified risk SNP was then further tested for association with hippocampal volume (n = 577 5) and cognitive performance (n = 342) among healthy individuals. Integrative analysis revealed a significant association between a brain eQTL rs6088662 on chromosome 20q11.22 and bipolar disorder (log Bayes factor = 5.48; bipolar disorder P=5.85 x 10(-5)). Follow-up studies across multiple independent samples confirmed the association of the risk SNP (rs6088662) with gene expression and bipolar disorder susceptibility (P=3.54 x 10(-8)). Further exploratory analysis revealed that rs6088662 is also associated with hippocampal volume and cognitive performance in healthy individuals. Our findings suggest that 20q11.22 is likely a risk region for bipolar disorder; they also highlight the informative value of integrating functional annotation of genetic variants for gene expression in advancing our understanding of the biological basis underlying complex disorders, such as bipolar disorder.
  •  
45.
  • McWhinney, Sean R, et al. (författare)
  • Mega-analysis of association between obesity and cortical morphology in bipolar disorders: ENIGMA study in 2832 participants.
  • 2023
  • Ingår i: Psychological medicine. - 1469-8978. ; 53:14, s. 6743-6753
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact.We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations.BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI.We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
  •  
46.
  •  
47.
  • McWhinney, Sean R, et al. (författare)
  • Association between body mass index and subcortical brain volumes in bipolar disorders-ENIGMA study in 2735 individuals.
  • 2021
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:11, s. 6806-6819
  • Tidskriftsartikel (refereegranskat)abstract
    • Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediatedby BMI (Z=2.73, p=0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.
  •  
48.
  • McWhinney, Sean R, et al. (författare)
  • Diagnosis of bipolar disorders and body mass index predict clustering based on similarities in cortical thickness-ENIGMA study in 2436 individuals.
  • 2022
  • Ingår i: Bipolar disorders. - : Wiley. - 1399-5618 .- 1398-5647. ; 24:5, s. 509-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Rates of obesity have reached epidemic proportions, especially among people with psychiatric disorders. While the effects of obesity on the brain are of major interest in medicine, they remain markedly under-researched in psychiatry.We obtained body mass index (BMI) and magnetic resonance imaging-derived regional cortical thickness, surface area from 836 bipolar disorders (BD) and 1600 control individuals from 14sites within the ENIGMA-BD Working Group. We identified regionally specific profiles of cortical thickness using K-means clustering and studied clinical characteristics associated with individual cortical profiles.We detected two clusters based on similarities among participants in cortical thickness. The lower thickness cluster (46.8% of the sample) showed thinner cortex, especially in the frontal and temporal lobes and was associated with diagnosis of BD, higher BMI, and older age. BD individuals in the low thickness cluster were more likely to have the diagnosis of bipolar disorder I and less likely to be treated with lithium. In contrast, clustering based on similarities in the cortical surface area was unrelated to BD or BMI and only tracked age and sex.We provide evidence that both BD and obesity are associated with similar alterations in cortical thickness, but not surface area. The fact that obesity increased the chance of having low cortical thickness could explain differences in cortical measures among people with BD. The thinner cortex in individuals with higher BMI, which was additive and similar to the BD-associated alterations, may suggest that treating obesity could lower the extent of cortical thinning in BD.
  •  
49.
  • Sellgren, C. M., et al. (författare)
  • GRK3 deficiency elicits brain immune activation and psychosis
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 6820-6832
  • Tidskriftsartikel (refereegranskat)abstract
    • The G protein-coupled receptor kinase (GRK) family member protein GRK3 has been linked to the pathophysiology of schizophrenia and bipolar disorder. Expression, as well as protein levels, of GRK3 are reduced in post-mortem prefrontal cortex of schizophrenia subjects. Here, we investigate functional behavior and neurotransmission related to immune activation and psychosis using mice lacking functional Grk3 and utilizing a variety of methods, including behavioral, biochemical, electrophysiological, molecular, and imaging methods. Compared to wildtype controls, the Grk3(-/-) mice show a number of aberrations linked to psychosis, including elevated brain levels of IL-1 beta, increased turnover of kynurenic acid (KYNA), hyper-responsiveness to D-amphetamine, elevated spontaneous firing of midbrain dopamine neurons, and disruption in prepulse inhibition. Analyzing human genetic data, we observe a link between psychotic features in bipolar disorder, decreased GRK expression, and increased concentration of CSF KYNA. Taken together, our data suggest that Grk3(-/-) mice show face and construct validity relating to the psychosis phenotype with glial activation and would be suitable for translational studies of novel immunomodulatory agents in psychotic disorders.
  •  
50.
  • Soda, T., et al. (författare)
  • International Consortium on the Genetics of Electroconvulsive Therapy and Severe Depressive Disorders (Gen-ECT-ic)
  • 2020
  • Ingår i: European Archives of Psychiatry and Clinical Neuroscience. - : Springer Science and Business Media LLC. - 0940-1334 .- 1433-8491. ; 270:7, s. 921-932
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genome-wide association studies have demonstrated that the genetic burden associated with depression correlates with depression severity. Therefore, conducting genetic studies of patients at the most severe end of the depressive disorder spectrum, those with treatment-resistant depression and who are prescribed electroconvulsive therapy (ECT), could lead to a better understanding of the genetic underpinnings of depression. Despite ECT being one of the most effective forms of treatment for severe depressive disorders, it is usually placed at the end of treatment algorithms of current guidelines. This is perhaps because ECT has controlled risk and logistical demands including use of general anaesthesia and muscle relaxants and side-effects such as short-term memory impairment. Better understanding of the genetics and biology of ECT response and of cognitive side-effects could lead to more personalized treatment decisions. To enhance the understanding of the genomics of severe depression and ECT response, researchers and ECT providers from around the world and from various depression or ECT networks, but not limited to, such as the Psychiatric Genomics Consortium, the Clinical Alliance and Research in ECT, and the National Network of Depression Centers have formed the Genetics of ECT International Consortium (Gen-ECT-ic). Gen-ECT-ic will organize the largest clinical and genetic collection to date to study the genomics of severe depressive disorders and response to ECT, aiming for 30,000 patients worldwide using a GWAS approach. At this stage it will be the largest genomic study on treatment response in depression. Retrospective data abstraction and prospective data collection will be facilitated by a uniform data collection approach that is flexible and will incorporate data from many clinical practices. Gen-ECT-ic invites all ECT providers and researchers to join its efforts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 374
Typ av publikation
tidskriftsartikel (253)
konferensbidrag (115)
forskningsöversikt (5)
annan publikation (1)
Typ av innehåll
refereegranskat (245)
övrigt vetenskapligt/konstnärligt (129)
Författare/redaktör
Landén, Mikael, 1966 (166)
Landen, M (161)
Lichtenstein, P. (50)
Landén, NX (38)
Cichon, S (34)
Reif, A. (33)
visa fler...
Rietschel, M (30)
Ripke, S (28)
Bellivier, F. (28)
Etain, B. (28)
Leboyer, M. (28)
Bauer, M (27)
Eriksson, E (27)
Vieta, E (26)
Schalling, M (26)
Herms, S. (26)
Alda, M. (26)
Stahle, M (25)
Jamain, S. (25)
Breen, G (23)
Mattheisen, M (22)
Muller-Myhsok, B (22)
Backlund, L (22)
Degenhardt, F (22)
Craddock, N (21)
Hauser, J. (21)
Martin, NG (20)
Grigoroiu-Serbanescu ... (20)
Westberg, L (20)
Song, J. (19)
Sellgren, C (19)
Sonkoly, E (19)
Dannlowski, U (19)
Palsson, E (19)
Li, D. (18)
Alda, Martin (18)
Sklar, P (18)
Frisen, L. (18)
Pfennig, A. (18)
Andreassen, O. A. (18)
McGuffin, P (18)
Mitchell, Philip B (17)
Ekman, CJ (17)
Hoffmann, P (17)
Jones, I. (17)
Baune, B. T. (17)
Kittel-Schneider, S. (17)
O'Donovan, C. (17)
Hultman, C. M. (17)
Pivarcsi, A (17)
visa färre...
Lärosäte
Karolinska Institutet (351)
Göteborgs universitet (171)
Umeå universitet (24)
Uppsala universitet (20)
Örebro universitet (17)
Linköpings universitet (10)
visa fler...
Lunds universitet (10)
Chalmers tekniska högskola (6)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
RISE (1)
visa färre...
Språk
Engelska (374)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (184)
Naturvetenskap (7)
Teknik (6)
Samhällsvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy