SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lardo C.) "

Sökning: WFRF:(Lardo C.)

  • Resultat 51-60 av 61
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Martin, N. F., et al. (författare)
  • A stellar stream remnant of a globular cluster below the metallicity floor
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 601:7891, s. 45-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Stellar ejecta gradually enrich the gas out of which subsequent stars form, making the least chemically enriched stellar systems direct fossils of structures formed in the early Universe1. Although a few hundred stars with metal content below 1,000th of the solar iron content are known in the Galaxy2–4, none of them inhabit globular clusters, some of the oldest known stellar structures. These show metal content of at least approximately 0.2% of the solar metallicity ([Fe / H] ≳ − 2.7). This metallicity floor appears universal5,6, and it has been proposed that protogalaxies that merged into the galaxies we observe today were simply not massive enough to form clusters that survived to the present day7. Here we report observations of a stellar stream, C-19, whose metallicity is less than 0.05% of the solar metallicity ([Fe/H]=−3.38±0.06(statistical)±0.20(systematic)). The low metallicity dispersion and the chemical abundances of the C-19 stars show that this stream is the tidal remnant of the most metal-poor globular cluster ever discovered, and is significantly below the purported metallicity floor: clusters with significantly lower metallicities than observed today existed in the past and contributed their stars to the Milky Way halo. 
  •  
52.
  • Martocchia, S., et al. (författare)
  • The search for multiple populations in Magellanic Cloud clusters - IV. Coeval multiple stellar populations in the young star cluster NGC 1978
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 477:4, s. 4696-4705
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently shown that the similar to 2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the subgiant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Because of its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star formation epochs have occurred within NGC 1978. First, we use ultraviolet colour-magnitude diagrams (CMDs) to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 +/- 20 Myr between them. This is in tension with predictions from the asymptotic giant branch scenario for the origin of multiple populations. Second, we estimate the broadness of the main-sequence turn-off (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of similar to 65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extended MSTO in intermediate-age clusters, while it fully supports predictions from the stellar rotation model.
  •  
53.
  • Arentsen, A., et al. (författare)
  • The Pristine Inner Galaxy Survey (PIGS) I : tracing the kinematics of metal-poor stars in the Galactic bulge
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 491:1, s. L11-L16
  • Tidskriftsartikel (refereegranskat)abstract
    • Our Galaxy is known to contain a central boxy/peanut-shaped bulge, yet the importance of a classical, pressure-supported component within the central part of the Milky Way is still being debated. It should be most visible at low metallicity, a regime that has not yet been studied in detail. Using metallicity-sensitive narrow-band photometry, the Pristine Inner Galaxy Survey (PIGS) has collected a large sample of metal-poor ([Fe/H] < -1.0) stars in the inner Galaxy to address this open question. We use PIGS to trace the metal-poor inner Galaxy kinematics as function of metallicity for the first time. We find that the rotational signal decreases with decreasing [Fe/H], until it becomes negligible for the most metal-poor stars. Additionally, the velocity dispersion increases with decreasing metallicity for -3.0 < [Fe/II] < -0.5, with a gradient of -44 +/- 41un s(-1)dex(-1). These observations may signal a transition between Galactic components of different metallicities and kinematics, a different mapping on to the boxy/peanut-shaped bulge for former disc stars of different metallicities and/or the secular dynamical and gravitational influence of the bar on the pressure-supported component. Our results provide strong constraints on models that attempt to explain the properties of the inner Galaxy.
  •  
54.
  • Cabrera-Ziri, I., et al. (författare)
  • Searching for globular cluster chemical anomalies on the main sequence of a young massive cluster
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 495:1, s. 375-382
  • Tidskriftsartikel (refereegranskat)abstract
    • The spectroscopic and photometric signals of the star-to-star abundance variations found in globular clusters seem to be correlated with global parameters like the cluster's metallicity, mass, and age. Understanding this behaviour could bring us closer to the origin of these intriguing abundance spreads. In this work we use deep HST photometry to look for evidence of abundance variations in the main sequence of a young massive cluster NGC 419 (similar to 10(5) M-circle dot, similar to 1.4 Gyr). Unlike previous studies, here we focus on stars in the same mass range found in old globulars (similar to 0.75-1 M-circle dot), where light elements variations are detected. We find no evidence for N abundance variations among these stars in the Un - B and U - B colour-magnitude diagrams of NGC 419. This is at odds with the N variations found in old globulars like 47 Tuc, NGC 6352, and NGC 6637 with similar metallicity to NGC 419. Although the signature of the abundance variations characteristic of old globulars appears to be significantly smaller or absent in this young cluster, we cannot conclude if this effect is mainly driven by its age or its mass.
  •  
55.
  • Hollyhead, Katherine, et al. (författare)
  • Kron 3 : a fourth intermediate age cluster in the SMC with evidence of multiple populations
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 476:1, s. 114-121
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a spectroscopic study of the intermediate age (approximate to 6.5 Gyr) massive cluster Kron 3 in the Small Magellanic Cloud. We measure CN and CH band strengths (at similar or equal to 3839 and 4300 angstrom, respectively) using VLT FORS2 spectra of 16 cluster members and find a sub-population of five stars enriched in nitrogen. We conclude that this is evidence for multiple populations in Kron 3, the fourth intermediate age cluster, after Lindsay 1, NGC 416 and NGC 339 (ages 6-8 Gyr), to display this phenomenon originally thought to be a unique characteristic of old globular clusters. At approximate to 6.5 Gyr this is one of the youngest clusters with multiple populations, indicating that the mechanism responsible for their onset must operate until a redshift of at least 0.75, much later than the peak of globular cluster formation at redshift similar to 3.
  •  
56.
  • Lucchesi, R., et al. (författare)
  • The Pristine survey – XV. A CFHT ESPaDOnS view on the Milky Way halo and disc populations 
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 511:1, s. 1004-1021
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a one-dimensional, local thermodynamic equilibrium homogeneous analysis of 132 stars observed at high resolutionwith ESPaDOnS. This represents the largest sample observed at high resolution (R ∼ 40 000) from the Pristine survey. Thissample is based on the first version of the Pristine catalogue and covers the full range of metallicities from [Fe/H] ∼−3 to∼+0.25, with nearly half of our sample (58 stars) composed of very metal-poor (VMP) stars ([Fe/H] ≤ −2). This wide rangeof metallicities provides the opportunity of a new detailed study of the Milky Way stellar population. Because it includes bothdwarf and giant stars, it also enables the analysis of any potential bias induced by the Pristine selection process. Based on GaiaEDR3, the orbital analysis of this Pristine-ESPaDOnS sample shows that it is composed of 65 halo stars and 67 disc stars. Aftera general assessment of the sample chemical properties with the α-elements Mg and Ca, we focus on the abundance of carbonand the neutron capture elements Ba and Sr. While most of our VMP subsample is carbon normal, we also find that 14 starsout of the 38 stars with [Fe/H] ≤ −2 and measured carbon abundances turn out to be carbon-enhanced metal-poor (CEMP)stars. We show that these CEMP stars are nearly exclusively (i.e. 12 stars out of 14) in the regime of low luminosity, unevolved,dwarf stars, which we interpret as the consequence of bias of the Pristine filter against C-rich giants. Among the VMP stars,we identify two CEMP stars with no enhancement in neutron-capture process elements and another one enriched in s-processelement. Finally, one VMP star is found with a very low [Sr/Fe] abundance ratio for its metallicity, as expected if it had beenaccreted from an ultra-faint dwarf galaxy.
  •  
57.
  • Martocchia, S., et al. (författare)
  • Leveraging HST with MUSE : II. Na-abundance variations in intermediate age star clusters
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 499:1, s. 1200-1211
  • Tidskriftsartikel (refereegranskat)abstract
    • Ancient (>10 Gyr) globular clusters (GCs) show chemical abundance variations in the form of patterns among certain elements, e.g. N correlates with Na and anticorrelates with O. Recently, N abundance spreads have also been observed in massive star clusters that are significantly younger than old GCs, down to an age of similar to 2Gyr. However, so far N has been the only element found to vary in such young objects. We report here the presence of Na abundance variations in the intermediate age massive star clusters NGC 416 (similar to 6.5Gyr old) and Lindsay 1 (similar to 7.5Gyr old) in the Small Magellanic Cloud, by combining Hubble Space Telescope (HST) and European Southern Observatory Very Large Telescope MUSE observations. Using HST photometry, we were able to construct 'chromosome maps' and separate subpopulations with different N content, in the red giant branch of each cluster. MUSE spectra of individual stars belonging to each population were combined, resulting in high signal-to-noise spectra representative of each population, which were compared to search for mean differences in Na. We find a mean abundance variation of Delta[Na/Fe] = 0.18 +/- 0.04 dex for NGC 416 and Delta[Na/Fe] = 0.24 +/- 0.05 dex for Lindsay 1. In both clusters, we find that the population that is enhanced in N is also enhanced in Na, which is the same pattern to the one observed in ancient GCs. Furthermore, we detect a bimodal distribution of core-helium-burning red clump (RC) giants in the UV colour-magnitude diagram of NGC 416. A comparison of the stacked MUSE spectra of the two RCs shows the same mean Na abundance difference between the two populations. The results reported in this work are a crucial hint that star clusters of a large age range share the same origin: they are the same types of objects, but only separated in age.
  •  
58.
  • Pancino, E., et al. (författare)
  • The Gaia-ESO Survey Mg-Al anti-correlation in iDR4 globular clusters
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Tidskriftsartikel (refereegranskat)abstract
    • We use Gaia-ESO (GES) Survey iDR4 data to explore the Mg-Alanti-correlation in globular clusters that were observed as calibrators, as a demonstration of the quality of Gaia-ESO Survey data and analysis. The results compare well with the available literature, within 0.1 dex or less, after a small (compared to the internal spreads) off set between the UVES and GIRAFFE data of 0.10-0.15 dex was taken into account. In particular, for the first time we present data for NGC 5927, which is one of the most metal-rich globular clusters studied in the literature so far with [Fe/H] = -0.39 +/- 0.04 dex; this cluster was included to connect with the open cluster regime in the Gaia-ESO Survey internal calibration. The extent and shape of the Mg-Al anti-correlation provide strong constraints on the multiple population phenomenon in globular clusters. In particular, we studied the dependency of the Mg-Al anti-correlation extension with metallicity, present-day mass, and age of the clusters, using GES data in combination with a large set of homogenized literature measurements. We find a dependency with both metallicity and mass, which is evident when fitting for the two parameters simultaneously, but we do not find significant dependency with age. We confirm that the Mg-Al anti-correlation is not seen in all clusters, but disappears for the less massive or most metal-rich clusters. We also use our data set to see whether a normal anti-correlation would explain the low [Mg/ff] observed in some extragalactic globular clusters, but find that none of the clusters in our sample can reproduce it; a more extreme chemical composition, such as that of NGC 2419, would be required. We conclude that GES iDR4 data already meet the requirements set by the main survey goals and can be used to study globular clusters in detail, even if the analysis procedures were not specifically designed for them.
  •  
59.
  • Saracino, S., et al. (författare)
  • Leveraging HST with MUSE - I. Sodium abundance variations within the 2-Gyr-old cluster NGC 1978
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:3, s. 4472-4480
  • Tidskriftsartikel (refereegranskat)abstract
    • Nearly all of the well-studied ancient globular clusters (GCs), in the Milky Way and in nearby galaxies, show star-to-star variations in specific elements (e.g. He, C, N, O, Na, and Al), known as 'multiple populations' (MPs). However, MPs are not restricted to ancient clusters, with massive clusters down to similar to 2 Gyr showing signs of chemical variations. This suggests that young and old clusters share the same formation mechanism but most of the work to date on younger clusters has focused on N variations. Initial studies even suggested that younger clusters may not host spreads in other elements beyond N (e.g. Na), calling into question whether these abundance variations share the same origin as in the older GCs. In this work, we combine Hubble Space Telescope (HST) photometry with Very Large Telescope (VLT)/Multi-Unit Spectroscopic Explorer (MUSE) spectroscopy of a large sample of red giant branch (RGB) stars (338) in the Large Magellanic Cloud cluster NGC 1978, the youngest globular to date with reported MPs in the form of N spreads. By combining the spectra of individual RGB stars into N-normal and N-enhanced samples, based on the 'chromosome map' derived from HST, we search for mean abundance variations. Based on the NaD line, we find a Na difference of Delta[Na/Fe] = 0.07 +/- 0.01 between the populations. While this difference is smaller than typically found in ancient GCs (which may suggest a correlation with age), this result further confirms that the MP phenomenon is the same, regardless of cluster age and host galaxy. As such, these young clusters offer some of the strictest tests for theories on the origin of MPs.
  •  
60.
  • Tautvaišiene, G., et al. (författare)
  • Gaia -ESO Survey : Detailed elemental abundances in red giants of the peculiar globular cluster NGC 1851
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. NGC 1851 is one of several globular clusters for which multiple stellar populations of the subgiant branch have been clearly identified and a difference in metallicity detected. A crucial piece of information on the formation history of this cluster can be provided by the sum of A(C+N+O) abundances. However, these values have lacked a general consensus thus far. The separation of the subgiant branch can be based on age and/or A(C+N+O) abundance differences. Aims. Our main aim was to determine carbon, nitrogen, and oxygen abundances for evolved giants in the globular cluster NGC 1851 in order to check whether or not the double populations of stars are coeval. Methods. High-resolution spectra, observed with the FLAMES-UVES spectrograph on the ESO VLT telescope, were analysed using a differential model atmosphere method. Abundances of carbon were derived using spectral synthesis of the C2 band heads at 5135 and 5635.5 Å. The wavelength interval 6470-6490 Å, with CN features, was analysed to determine nitrogen abundances. Oxygen abundances were determined from the [O I] line at 6300 Å. Abundances of other chemical elements were determined from equivalent widths or spectral syntheses of unblended spectral lines. Results. We provide abundances of up to 29 chemical elements for a sample of 45 giants in NGC 1851. The investigated stars can be separated into two populations with a difference of 0.07 dex in the mean metallicity, 0.3 dex in the mean C/N, and 0.35 dex in the mean s-process dominated element-to-iron abundance ratios [s/Fe]. No significant difference was determined in the mean values of A(C+N+O) as well as in abundance to iron ratios of carbon, α- and iron-peak-elements, and of europium. Conclusions. As the averaged A(C+N+O) values between the two populations do not differ, additional evidence is given that NGC 1851 is composed of two clusters, the metal-rich cluster being by about 0.6 Gyr older than the metal-poor one. A global overview of NGC 1851 properties and the detailed abundances of chemical elements favour its formation in a dwarf spheroidal galaxy that was accreted by the Milky Way.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 61

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy