SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lernmark A) "

Sökning: WFRF:(Lernmark A)

  • Resultat 41-50 av 224
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Bediaga, Naiara G, et al. (författare)
  • Simplifying prediction of disease progression in pre-symptomatic type 1 diabetes using a single blood sample
  • 2021
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 64:11, s. 2432-2444
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Accurate prediction of disease progression in individuals with pre-symptomatic type 1 diabetes has potential to prevent ketoacidosis and accelerate development of disease-modifying therapies. Current tools for predicting risk require multiple blood samples taken during an OGTT. Our aim was to develop and validate a simpler tool based on a single blood draw.METHODS: Models to predict disease progression using a single OGTT time point (0, 30, 60, 90 or 120 min) were developed using TrialNet data collected from relatives with type 1 diabetes and validated in independent populations at high genetic risk of type 1 diabetes (TrialNet, Diabetes Prevention Trial-Type 1, The Environmental Determinants of Diabetes in the Young [1]) and in a general population of Bavarian children who participated in Fr1da.RESULTS: Cox proportional hazards models combining plasma glucose, C-peptide, sex, age, BMI, HbA1c and insulinoma antigen-2 autoantibody status predicted disease progression in all populations. In TrialNet, the AUC for receiver operating characteristic curves for models named M60, M90 and M120, based on sampling at 60, 90 and 120 min, was 0.760, 0.761 and 0.745, respectively. These were not significantly different from the AUC of 0.760 for the gold standard Diabetes Prevention Trial Risk Score, which requires five OGTT blood samples. In TEDDY, where only 120 min blood sampling had been performed, the M120 AUC was 0.865. In Fr1da, the M120 AUC of 0.742 was significantly greater than the M60 AUC of 0.615.CONCLUSIONS/INTERPRETATION: Prediction models based on a single OGTT blood draw accurately predict disease progression from stage 1 or 2 to stage 3 type 1 diabetes. The operational simplicity of M120, its validity across different at-risk populations and the requirement for 120 min sampling to stage type 1 diabetes suggest M120 could be readily applied to decrease the cost and complexity of risk stratification.
  •  
42.
  • Bekris, L. M., et al. (författare)
  • GAD65 autoantibody epitopes in adult patients with latent autoimmune diabetes following GAD65 vaccination
  • 2007
  • Ingår i: Diabetic Medicine. - : Wiley. - 1464-5491 .- 0742-3071. ; 24:5, s. 521-526
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Subcutaneous injection of recombinant human GAD65 (rhGAD65) in patients with latent autoimmune diabetes in adults (LADA) correlates with an increase in C-peptide levels. In this study we analysed the effect of rhGAD65 administration on the GAD65-specific autoimmune response. Methods Longitudinal serum samples obtained from LADA patients (n = 47) who received 4, 20, 100 or 500 mu g alum-formulated rhGAD65 or placebo by subcutaneous injection twice (4 weeks apart) were analysed for their epitope recognition using GAD65-specific recombinant Fab and GAD65/67 fusion proteins. Results Overall, minor changes in the epitope pattern were observed using either approach. Only in the 500-mu g dosage group was an increase in GAD65Ab level associated with a significant increase in the binding to a conformational epitope located at the middle part of GAD65. Conclusions Our data suggest that the apparent beneficial effects of 20 mu g alum-formulated recombinant human GAD65 is not explained by changes in the GAD65Ab epitope pattern.
  •  
43.
  • Bonifacio, Ezio, et al. (författare)
  • An Age-Related Exponential Decline in the Risk of Multiple Islet Autoantibody Seroconversion During Childhood
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 44:10, s. 2260-2268
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Islet autoimmunity develops before clinical type 1 diabetes and includes multiple and single autoantibody phenotypes. The objective was to determine age-related risks of islet autoantibodies that reflect etiology and improve screening for presymptomatic type 1 diabetes.RESEARCH DESIGN AND METHODS: The Environmental Determinants of Diabetes in the Young study prospectively monitored 8,556 genetically at-risk children at 3- to 6-month intervals from birth for the development of islet autoantibodies and type 1 diabetes. The age-related change in the risk of developing islet autoantibodies was determined using landmark and regression models.RESULTS: The 5-year risk of developing multiple islet autoantibodies was 4.3% (95% CI 3.8-4.7) at 7.5 months of age and declined to 1.1% (95% CI 0.8-1.3) at a landmark age of 6.25 years (P < 0.0001). Risk decline was slight or absent in single insulin and GAD autoantibody phenotypes. The influence of sex, HLA, and other susceptibility genes on risk subsided with increasing age and was abrogated by age 6 years. Highest sensitivity and positive predictive value of multiple islet autoantibody phenotypes for type 1 diabetes was achieved by autoantibody screening at 2 years and again at 5-7 years of age.CONCLUSIONS: The risk of developing islet autoimmunity declines exponentially with age, and the influence of major genetic factors on this risk is limited to the first few years of life.
  •  
44.
  • Bonifacio, Ezio, et al. (författare)
  • Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes : A prospective study in children
  • 2018
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1676. ; 15:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Around 0.3% of newborns will develop autoimmunity to pancreatic beta cells in childhood and subsequently develop type 1 diabetes before adulthood. Primary prevention of type 1 diabetes will require early intervention in genetically at-risk infants. The objective of this study was to determine to what extent genetic scores (two previous genetic scores and a merged genetic score) can improve the prediction of type 1 diabetes. Methods and findings: The Environmental Determinants of Diabetes in the Young (TEDDY) study followed genetically at-risk children at 3- to 6-monthly intervals from birth for the development of islet autoantibodies and type 1 diabetes. Infants were enrolled between 1 September 2004 and 28 February 2010 and monitored until 31 May 2016. The risk (positive predictive value) for developing multiple islet autoantibodies (pre-symptomatic type 1 diabetes) and type 1 diabetes was determined in 4,543 children who had no first-degree relatives with type 1 diabetes and either a heterozygous HLA DR3 and DR4-DQ8 risk genotype or a homozygous DR4-DQ8 genotype, and in 3,498 of these children in whom genetic scores were calculated from 41 single nucleotide polymorphisms. In the children with the HLA risk genotypes, risk for developing multiple islet autoantibodies was 5.8% (95% CI 5.0%–6.6%) by age 6 years, and risk for diabetes by age 10 years was 3.7% (95% CI 3.0%–4.4%). Risk for developing multiple islet autoantibodies was 11.0% (95% CI 8.7%–13.3%) in children with a merged genetic score of >14.4 (upper quartile; n = 907) compared to 4.1% (95% CI 3.3%–4.9%, P < 0.001) in children with a genetic score of ≤14.4 (n = 2,591). Risk for developing diabetes by age 10 years was 7.6% (95% CI 5.3%–9.9%) in children with a merged score of >14.4 compared with 2.7% (95% CI 1.9%–3.6%) in children with a score of ≤14.4 (P < 0.001). Of 173 children with multiple islet autoantibodies by age 6 years and 107 children with diabetes by age 10 years, 82 (sensitivity, 47.4%; 95% CI 40.1%–54.8%) and 52 (sensitivity, 48.6%, 95% CI 39.3%–60.0%), respectively, had a score >14.4. Scores were higher in European versus US children (P = 0.003). In children with a merged score of >14.4, risk for multiple islet autoantibodies was similar and consistently >10% in Europe and in the US; risk was greater in males than in females (P = 0.01). Limitations of the study include that the genetic scores were originally developed from case–control studies of clinical diabetes in individuals of mainly European decent. It is, therefore, possible that it may not be suitable to all populations. Conclusions: A type 1 diabetes genetic score identified infants without family history of type 1 diabetes who had a greater than 10% risk for pre-symptomatic type 1 diabetes, and a nearly 2-fold higher risk than children identified by high-risk HLA genotypes alone. This finding extends the possibilities for enrolling children into type 1 diabetes primary prevention trials.
  •  
45.
  •  
46.
  •  
47.
  •  
48.
  • Dunne, Jessica L., et al. (författare)
  • Rationale for enteroviral vaccination and antiviral therapies in human type 1 diabetes
  • 2019
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 62:5, s. 744-753
  • Tidskriftsartikel (refereegranskat)abstract
    • In type 1 diabetes, pancreatic beta cells are destroyed by chronic autoimmune responses. The disease develops in genetically susceptible individuals, but a role for environmental factors has been postulated. Viral infections have long been considered as candidates for environmental triggers but, given the lack of evidence for an acute, widespread, cytopathic effect in the pancreas in type 1 diabetes or for a closely related temporal association of diabetes onset with such infections, a role for viruses in type 1 diabetes remains unproven. Moreover, viruses have rarely been isolated from the pancreas of individuals with type 1 diabetes, mainly (but not solely) due to the inaccessibility of the organ. Here, we review past and recent literature to evaluate the proposals that chronic, recurrent and, possibly, persistent enteroviral infections occur in pancreatic beta cells in type 1 diabetes. We also explore whether these infections may be sustained by different virus strains over time and whether multiple viral hits can occur during the natural history of type 1 diabetes. We emphasise that only a minority of beta cells appear to be infected at any given time and that enteroviruses may become replication defective, which could explain why they have been isolated from the pancreas only rarely. We argue that enteroviral infection of beta cells largely depends on the host innate and adaptive immune responses, including innate responses mounted by beta cells. Thus, we propose that viruses could play a role in type 1 diabetes on multiple levels, including in the triggering and chronic stimulation of autoimmunity and in the generation of inflammation and the promotion of beta cell dysfunction and stress, each of which might then contribute to autoimmunity, as part of a vicious circle. We conclude that studies into the effects of vaccinations and/or antiviral drugs (some of which are currently on-going) is the only means by which the role of viruses in type 1 diabetes can be finally proven or disproven.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 224
Typ av publikation
tidskriftsartikel (194)
konferensbidrag (25)
bokkapitel (3)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (197)
övrigt vetenskapligt/konstnärligt (27)
Författare/redaktör
Lernmark, Åke (102)
LERNMARK, A (90)
Akolkar, Beena (45)
Toppari, Jorma (42)
Hagopian, William A. (41)
Krischer, Jeffrey P. (40)
visa fler...
Kockum, I. (39)
Ziegler, Anette G. (39)
She, Jin Xiong (36)
Rewers, Marian J. (34)
Landin-Olsson, M (29)
SUNDKVIST, G (24)
Vehik, Kendra (23)
FALORNI, A (20)
Sanjeevi, CB (19)
Ivarsson, S A (18)
Rewers, Marian (16)
Landin-Olsson, Mona (15)
Carlsson, Annelie (15)
Ludvigsson, Johnny (14)
Lindblad, B (13)
Hagopian, William (13)
Dahlquist, G (13)
Hyöty, Heikki (12)
Lernmark, Ake (12)
CARLSSON, A (11)
LANDINOLSSON, M (11)
Agardh, Daniel (11)
Lynch, Kristian (11)
Persson, B (11)
Törn, Carina (11)
Forsander, G (11)
Ludvigsson, J (10)
Marcus, C (10)
Ivarsson, Sten A. (10)
Graham, J. (9)
Holmberg, E. (9)
Liu, Xiang (9)
Neiderud, J (9)
Elding Larsson, Hele ... (9)
Johansson, C. (8)
LINDBERG, B (8)
Kockum, K (8)
Cilio, Corrado (8)
Torn, C (8)
Carlsson, E. (8)
Dahlquist, Gisela (8)
Larsson, Helena (8)
Forsander, Gun, 1951 (8)
Virtanen, Suvi M. (8)
visa färre...
Lärosäte
Lunds universitet (150)
Karolinska Institutet (94)
Linköpings universitet (18)
Uppsala universitet (13)
Göteborgs universitet (12)
Umeå universitet (10)
visa fler...
Jönköping University (2)
Örebro universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (222)
Svenska (1)
Danska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (145)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy