SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Luan Jian'an) "

Sökning: WFRF:(Luan Jian'an)

  • Resultat 81-85 av 85
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
81.
  • Yaghootkar, Hanieh, et al. (författare)
  • Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:12, s. 2806-2818
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
  •  
82.
  • Yang, Jian, et al. (författare)
  • FTO genotype is associated with phenotypic variability of body mass index
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 490:7419, s. 267-272
  • Tidskriftsartikel (refereegranskat)abstract
    • There is evidence across several species for genetic control of phenotypic variation of complex traits(1-4), such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using similar to 170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype)(5-7), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of similar to 0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI8, possibly mediated by DNA methylation(9,10). Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.
  •  
83.
  • Zheng, Ju Sheng, et al. (författare)
  • Plasma Vitamin C and type 2 diabetes : Genome-wide association study and mendelian randomization analysis in European populations
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 44:1, s. 98-106
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Higher plasma vitamin C levels are associated with lower type 2 diabetes risk, but whether this association is causal is uncertain. To investigate this, we studied the association of genetically predicted plasma vitamin C with type 2 diabetes. RESEARCH DESIGN AND METHODS We conducted genome-wide association studies of plasma vitamin C among 52,018 individuals of European ancestry to discover novel genetic variants. We performed Mendelian randomization analyses to estimate the association of genetically predicted differences in plasma vitamin C with type 2 diabetes in up to 80,983 case participants and 842,909 noncase participants. We compared this estimate with the observational association between plasma vitamin C and incident type 2 diabetes, including 8,133 case participants and 11,073 noncase participants. RESULTS We identified 11 genomic regions associated with plasma vitamin C (P < 5 ☓ 10-8), with the strongest signal at SLC23A1, and 10 novel genetic loci including SLC23A3, CHPT1, BCAS3, SNRPF, RER1, MAF, GSTA5, RGS14, AKT1, and FADS1. Plasma vitamin C was inversely associated with type 2 diabetes (hazard ratio per SD 0.88; 95% CI 0.82, 0.94), but there was no association between genetically predicted plasma vitamin C (excluding FADS1 variant due to its apparent pleiotropic effect) and type 2 diabetes (1.03; 95% CI 0.96, 1.10). CONCLUSIONS These findings indicate discordance between biochemically measured and genetically predicted plasma vitamin C levels in the association with type 2 diabetes among European populations. The null Mendelian randomization findings provide no strong evidence to suggest the use of vitamin C supplementation for type 2 diabetes prevention.
  •  
84.
  • Zheng, Ju-Sheng, et al. (författare)
  • The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations : A meta-analysis and Mendelian randomisation analysis
  • 2020
  • Ingår i: PLoS Medicine. - : Public Library of Science. - 1549-1277 .- 1549-1676. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prior research suggested a differential association of 25-hydroxyvitamin D (25(OH)D) metabolites with type 2 diabetes (T2D), with total 25(OH)D and 25(OH)D3 inversely associated with T2D, but the epimeric form (C3-epi-25(OH)D3) positively associated with T2D. Whether or not these observational associations are causal remains uncertain. We aimed to examine the potential causality of these associations using Mendelian randomisation (MR) analysis.Methods and findings: We performed a meta-analysis of genome-wide association studies for total 25(OH)D (N = 120,618), 25(OH)D3 (N = 40,562), and C3-epi-25(OH)D3 (N = 40,562) in participants of European descent (European Prospective Investigation into Cancer and Nutrition [EPIC]–InterAct study, EPIC-Norfolk study, EPIC-CVD study, Ely study, and the SUNLIGHT consortium). We identified genetic variants for MR analysis to investigate the causal association of the 25(OH)D metabolites with T2D (including 80,983 T2D cases and 842,909 non-cases). We also estimated the observational association of 25(OH)D metabolites with T2D by performing random effects meta-analysis of results from previous studies and results from the EPIC-InterAct study. We identified 10 genetic loci associated with total 25(OH)D, 7 loci associated with 25(OH)D3 and 3 loci associated with C3-epi-25(OH)D3. Based on the meta-analysis of observational studies, each 1–standard deviation (SD) higher level of 25(OH)D was associated with a 20% lower risk of T2D (relative risk [RR]: 0.80; 95% CI 0.77, 0.84; p < 0.001), but a genetically predicted 1-SD increase in 25(OH)D was not significantly associated with T2D (odds ratio [OR]: 0.96; 95% CI 0.89, 1.03; p = 0.23); this result was consistent across sensitivity analyses. In EPIC-InterAct, 25(OH)D3 (per 1-SD) was associated with a lower risk of T2D (RR: 0.81; 95% CI 0.77, 0.86; p < 0.001), while C3-epi-25(OH)D3 (above versus below lower limit of quantification) was positively associated with T2D (RR: 1.12; 95% CI 1.03, 1.22; p = 0.006), but neither 25(OH)D3 (OR: 0.97; 95% CI 0.93, 1.01; p = 0.14) nor C3-epi-25(OH)D3 (OR: 0.98; 95% CI 0.93, 1.04; p = 0.53) was causally associated with T2D risk in the MR analysis. Main limitations include the lack of a non-linear MR analysis and of the generalisability of the current findings from European populations to other populations of different ethnicities.Conclusions: Our study found discordant associations of biochemically measured and genetically predicted differences in blood 25(OH)D with T2D risk. The findings based on MR analysis in a large sample of European ancestry do not support a causal association of total 25(OH)D or 25(OH)D metabolites with T2D and argue against the use of vitamin D supplementation for the prevention of T2D.
  •  
85.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 81-85 av 85
Typ av publikation
tidskriftsartikel (85)
Typ av innehåll
refereegranskat (85)
Författare/redaktör
Luan, Jian'an (86)
Wareham, Nicholas J. (67)
Langenberg, Claudia (53)
Loos, Ruth J F (45)
Boehnke, Michael (41)
McCarthy, Mark I (38)
visa fler...
Laakso, Markku (36)
Mohlke, Karen L (36)
Lind, Lars (35)
Barroso, Ines (35)
Zhao, Jing Hua (35)
Hayward, Caroline (35)
Morris, Andrew P. (35)
Salomaa, Veikko (34)
Gieger, Christian (34)
van Duijn, Cornelia ... (33)
Uitterlinden, André ... (32)
Chasman, Daniel I. (31)
Hofman, Albert (31)
Vollenweider, Peter (31)
Jackson, Anne U. (31)
Perola, Markus (30)
Rudan, Igor (30)
Deloukas, Panos (30)
Kuusisto, Johanna (30)
Scott, Robert A (30)
Tuomilehto, Jaakko (30)
Stefansson, Kari (30)
Lindgren, Cecilia M. (30)
Ridker, Paul M. (29)
Metspalu, Andres (29)
Esko, Tõnu (29)
Zhang, Weihua (29)
Rotter, Jerome I. (28)
Samani, Nilesh J. (28)
Jarvelin, Marjo-Riit ... (28)
Franks, Paul W. (27)
Hansen, Torben (27)
Thorleifsson, Gudmar (27)
Thorsteinsdottir, Un ... (27)
Munroe, Patricia B. (27)
Harris, Tamara B (27)
van der Harst, Pim (27)
Collins, Francis S. (27)
Mangino, Massimo (26)
Mahajan, Anubha (26)
Gudnason, Vilmundur (26)
Polasek, Ozren (26)
Boerwinkle, Eric (26)
Feitosa, Mary F. (26)
visa färre...
Lärosäte
Lunds universitet (58)
Uppsala universitet (51)
Umeå universitet (43)
Karolinska Institutet (37)
Göteborgs universitet (16)
Stockholms universitet (4)
visa fler...
Högskolan Dalarna (3)
Örebro universitet (2)
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
Handelshögskolan i Stockholm (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (85)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (78)
Naturvetenskap (12)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy