SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marcus Michael W) "

Sökning: WFRF:(Marcus Michael W)

  • Resultat 51-60 av 112
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Voight, Benjamin F, et al. (författare)
  • Plasma HDL cholesterol and risk of myocardial infarction : a mendelian randomisation study
  • 2012
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 380:9841, s. 572-580
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.METHODS: We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20,913 myocardial infarction cases, 95,407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12,482 cases of myocardial infarction and 41,331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.FINDINGS: Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10(-13)) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84-0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88-1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58-0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68-1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45-1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69-2·69, p=2×10(-10)).INTERPRETATION: Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.
  •  
52.
  • Weinstock, Joshua S, et al. (författare)
  • Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.
  • 2023
  • Ingår i: Nature. - 1476-4687. ; 616:7958, s. 755-763
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, butthis effect was not seen inclones withdriver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimentalknockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.
  •  
53.
  • Wheeler, Eleanor, et al. (författare)
  • Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations : A transethnic genome-wide meta-analysis
  • 2017
  • Ingår i: PLoS Medicine. - : PUBLIC LIBRARY SCIENCE. - 1549-1277 .- 1549-1676. ; 14:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.Methods & findings: Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04-1.06, per HbA1c-raising allele, p = 3 x 10-29); whereas GS-E was not (OR = 1.00, 95% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66-0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI0.55-0.74) of African American adults with T2Dto remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants.Conclusions: As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.
  •  
54.
  • Akbari, Parsa, et al. (författare)
  • Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 373:6550
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale human exome sequencing can identify rare protein-coding variants with a large impact on complex traits such as body adiposity. We sequenced the exomes of 645,626 individuals from the United Kingdom, the United States, and Mexico and estimated associations of rare coding variants with body mass index (BMI). We identified 16 genes with an exome-wide significant association with BMI, including those encoding five brain-expressed G protein-coupled receptors (CALCR, MC4R, GIPR, GPR151, and GPR75). Protein-truncating variants in GPR75 were observed in ∼4/10,000 sequenced individuals and were associated with 1.8 kilograms per square meter lower BMI and 54% lower odds of obesity in the heterozygous state. Knock out of Gpr75 in mice resulted in resistance to weight gain and improved glycemic control in a high-fat diet model. Inhibition of GPR75 may provide a therapeutic strategy for obesity.
  •  
55.
  • Chng, Kern Rei, et al. (författare)
  • Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment
  • 2020
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 26, s. 941-951
  • Tidskriftsartikel (refereegranskat)abstract
    • Although disinfection is key to infection control, the colonization patterns and resistomes of hospital-environment microbes remain underexplored. We report the first extensive genomic characterization of microbiomes, pathogens and antibiotic resistance cassettes in a tertiary-care hospital, from repeated sampling (up to 1.5 years apart) of 179 sites associated with 45 beds. Deep shotgun metagenomics unveiled distinct ecological niches of microbes and antibiotic resistance genes characterized by biofilm-forming and human-microbiome-influenced environments with corresponding patterns of spatiotemporal divergence. Quasi-metagenomics with nanopore sequencing provided thousands of high-contiguity genomes, phage and plasmid sequences (>60% novel), enabling characterization of resistome and mobilome diversity and dynamic architectures in hospital environments. Phylogenetics identified multidrug-resistant strains as being widely distributed and stably colonizing across sites. Comparisons with clinical isolates indicated that such microbes can persist in hospitals for extended periods (>8 years), to opportunistically infect patients. These findings highlight the importance of characterizing antibiotic resistance reservoirs in hospitals and establish the feasibility of systematic surveys to target resources for preventing infections. Spatiotemporal characterization of microbial diversity and antibiotic resistance in a tertiary-care hospital reveals broad distribution and persistence of antibiotic-resistant organisms that could cause opportunistic infections in a healthcare setting.
  •  
56.
  • Gorski, Mathias, et al. (författare)
  • Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline
  • 2021
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 99:4, s. 926-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
  •  
57.
  • Haas, Brian J., et al. (författare)
  • Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 461:7262, s. 393-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population(1). Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion(2). Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars(3,4). Here we report the sequence of the P. infestans genome, which at similar to 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for similar to 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
  •  
58.
  • Hageman, Steven H. J., et al. (författare)
  • Prediction of individual lifetime cardiovascular risk and potential treatment benefit: development and recalibration of the LIFE-CVD2 model to four European risk regions
  • 2024
  • Ingår i: EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY. - 2047-4873 .- 2047-4881.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The 2021 European Society of Cardiology prevention guidelines recommend the use of (lifetime) risk prediction models to aid decisions regarding initiation of prevention. We aimed to update and systematically recalibrate the LIFEtime-perspective CardioVascular Disease (LIFE-CVD) model to four European risk regions for the estimation of lifetime CVD risk for apparently healthy individuals.Methods and results The updated LIFE-CVD (i.e. LIFE-CVD2) models were derived using individual participant data from 44 cohorts in 13 countries (687 135 individuals without established CVD, 30 939 CVD events in median 10.7 years of follow-up). LIFE-CVD2 uses sex-specific functions to estimate the lifetime risk of fatal and non-fatal CVD events with adjustment for the competing risk of non-CVD death and is systematically recalibrated to four distinct European risk regions. The updated models showed good discrimination in external validation among 1 657 707 individuals (61 311 CVD events) from eight additional European cohorts in seven countries, with a pooled C-index of 0.795 (95% confidence interval 0.767-0.822). Predicted and observed CVD event risks were well calibrated in population-wide electronic health records data in the UK (Clinical Practice Research Datalink) and the Netherlands (Extramural LUMC Academic Network). When using LIFE-CVD2 to estimate potential gain in CVD-free life expectancy from preventive therapy, projections varied by risk region reflecting important regional differences in absolute lifetime risk. For example, a 50-year-old smoking woman with a systolic blood pressure (SBP) of 140 mmHg was estimated to gain 0.9 years in the low-risk region vs. 1.6 years in the very high-risk region from lifelong 10 mmHg SBP reduction. The benefit of smoking cessation for this individual ranged from 3.6 years in the low-risk region to 4.8 years in the very high-risk region.Conclusion By taking into account geographical differences in CVD incidence using contemporary representative data sources, the recalibrated LIFE-CVD2 model provides a more accurate tool for the prediction of lifetime risk and CVD-free life expectancy for individuals without previous CVD, facilitating shared decision-making for cardiovascular prevention as recommended by 2021 European guidelines. The study introduces LIFE-CVD2, a new tool that helps predict the risk of heart disease over a person's lifetime, and highlights how where you live in Europe can affect this risk. Using health information from over 687 000 people, LIFE-CVD2 looks at things like blood pressure and whether someone smokes to figure out their chance of having heart problems later in life. Health information from another 1.6 million people in seven different European countries was used to show that it did a good job of predicting who might develop heart disease.Knowing your heart disease risk over your whole life helps doctors give you the best advice to keep your heart healthy. Let us say there is a 50-year-old woman who smokes and has a bit high blood pressure. Right now, she might not look like she is in danger. But with the LIFE-CVD2 tool, doctors can show her how making changes today, like lowering her blood pressure or stopping smoking, could mean many more years without heart problems. These healthy changes can make a big difference over many years.
  •  
59.
  • Jay, Raphael M., et al. (författare)
  • Disentangling Transient Charge Density and Metal-Ligand Covalency in Photoexcited Ferricyanide with Femtosecond Resonant Inelastic Soft X-ray Scattering
  • 2018
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 9:12, s. 3538-3543
  • Tidskriftsartikel (refereegranskat)abstract
    • Soft X-ray spectroscopies are ideal probes of the local valence electronic structure of photocatalytically active metal sites. Here, we apply the selectivity of time resolved resonant inelastic X-ray scattering at the iron L-edge to the transient charge distribution of an optically excited charge-transfer state in aqueous ferricyanide. Through comparison to steady-state spectra and quantum chemical calculations, the coupled effects of valence-shell closing and ligand-hole creation are experimentally and theoretically disentangled and described in terms of orbital occupancy, metal-ligand covalency, and ligand field splitting, thereby extending established steady-state concepts to the excited-state domain. pi-Back-donation is found to be mainly determined by the metal site occupation, whereas the ligand hole instead influences sigma-donation. Our results demonstrate how ultrafast resonant inelastic X-ray scattering can help characterize local charge distributions around catalytic metal centers in short-lived charge-transfer excited states, as a step toward future rationalization and tailoring of photocatalytic capabilities of transition-metal complexes.
  •  
60.
  • Ji, Xuemei, et al. (författare)
  • Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 112
Typ av publikation
tidskriftsartikel (108)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (110)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Boerwinkle, Eric (30)
Samani, Nilesh J. (29)
van der Harst, Pim (29)
Chasman, Daniel I. (26)
Loos, Ruth J F (26)
Psaty, Bruce M (26)
visa fler...
Gudnason, Vilmundur (26)
Melander, Olle (25)
Boehnke, Michael (25)
Hayward, Caroline (25)
Wareham, Nicholas J. (24)
Ridker, Paul M. (24)
Hofman, Albert (24)
Salomaa, Veikko (23)
Lind, Lars (23)
van Duijn, Cornelia ... (23)
Rotter, Jerome I. (23)
Munroe, Patricia B. (23)
Harris, Tamara B (23)
Deloukas, Panos (22)
Verweij, Niek (22)
Kleber, Marcus E. (22)
Rudan, Igor (21)
Stefansson, Kari (21)
Polasek, Ozren (21)
Teumer, Alexander (21)
Langenberg, Claudia (20)
Gieger, Christian (20)
Wilson, James F. (20)
Uitterlinden, André ... (20)
Esko, Tõnu (20)
Snieder, Harold (20)
Morris, Andrew P. (20)
Nelson, Christopher ... (19)
Watkins, Hugh (19)
Thorleifsson, Gudmar (18)
Mahajan, Anubha (18)
Froguel, Philippe (18)
Luan, Jian'an (18)
Metspalu, Andres (18)
Padmanabhan, Sandosh (18)
Asselbergs, Folkert ... (18)
Perola, Markus (17)
Campbell, Harry (17)
Laakso, Markku (17)
Peters, Annette (17)
Caulfield, Mark J. (17)
Goel, Anuj (17)
Smith, Albert V (17)
Lindgren, Cecilia M. (17)
visa färre...
Lärosäte
Uppsala universitet (61)
Lunds universitet (52)
Karolinska Institutet (37)
Umeå universitet (27)
Göteborgs universitet (22)
Stockholms universitet (9)
visa fler...
Sveriges Lantbruksuniversitet (6)
Kungliga Tekniska Högskolan (5)
Linköpings universitet (5)
Högskolan Dalarna (4)
Handelshögskolan i Stockholm (2)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (112)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (90)
Naturvetenskap (24)
Teknik (1)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy