SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McGuire A. David) "

Sökning: WFRF:(McGuire A. David)

  • Resultat 21-30 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Andresen, Christian G., et al. (författare)
  • Soil moisture and hydrology projections of the permafrost region-a model intercomparison
  • 2020
  • Ingår i: Cryosphere. - : Copernicus GmbH. - 1994-0416. ; 14:2, s. 445-459
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates and compares soil moisture and hydrology projections of broadly used land models with permafrost processes and highlights the causes and impacts of permafrost zone soil moisture projections. Climate models project warmer temperatures and increases in precipitation (P) which will intensify evapotranspiration (ET) and runoff in land models. However, this study shows that most models project a long-term drying of the surface soil (0-20 cm) for the permafrost region despite increases in the net air-surface water flux (P-ET). Drying is generally explained by infiltration of moisture to deeper soil layers as the active layer deepens or permafrost thaws completely. Although most models agree on drying, the projections vary strongly in magnitude and spatial pattern. Land models tend to agree with decadal runoff trends but underestimate runoff volume when compared to gauge data across the major Arctic river basins, potentially indicating model structural limitations. Coordinated efforts to address the ongoing challenges presented in this study will help reduce uncertainty in our capability to predict the future Arctic hydrological state and associated land-atmosphere biogeochemical processes across spatial and temporal scales.
  •  
22.
  • Kuhn, McKenzie A., et al. (författare)
  • BAWLD-CH4 : a comprehensive dataset of methane fluxes from boreal and arctic ecosystems
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus Gesellschaft MBH. - 1866-3508 .- 1866-3516. ; 13:11, s. 5151-5189
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) emissions from the boreal and arctic region are globally significant and highly sensitive to climate change. There is currently a wide range in estimates of high-latitude annual CH4 fluxes, where estimates based on land cover inventories and empirical CH4 flux data or process models (bottom-up approaches) generally are greater than atmospheric inversions (top-down approaches). A limitation of bottom-up approaches has been the lack of harmonization between inventories of site-level CH4 flux data and the land cover classes present in high-latitude spatial datasets. Here we present a comprehensive dataset of small-scale, surface CH4 flux data from 540 terrestrial sites (wetland and non-wetland) and 1247 aquatic sites (lakes and ponds), compiled from 189 studies. The Boreal-Arctic Wetland and Lake Methane Dataset (BAWLD-CH4) was constructed in parallel with a compatible land cover dataset, sharing the same land cover classes to enable refined bottom-up assessments. BAWLD-CH4 includes information on site-level CH4 fluxes but also on study design (measurement method, timing, and frequency) and site characteristics (vegetation, climate, hydrology, soil, and sediment types, permafrost conditions, lake size and depth, and our determination of land cover class). The different land cover classes had distinct CH4 fluxes, resulting from definitions that were either based on or co-varied with key environmental controls. Fluxes of CH4 from terrestrial ecosystems were primarily influenced by water table position, soil temperature, and vegetation composition, while CH4 fluxes from aquatic ecosystems were primarily influenced by water temperature, lake size, and lake genesis. Models could explain more of the between-site variability in CH4 fluxes for terrestrial than aquatic ecosystems, likely due to both less precise assessments of lake CH4 fluxes and fewer consistently reported lake site characteristics. Analysis of BAWLD-CH4 identified both land cover classes and regions within the boreal and arctic domain, where future studies should be focused, alongside methodological approaches. Overall, BAWLD-CH4 provides a comprehensive dataset of CH4 emissions from high-latitude ecosystems that are useful for identifying research opportunities, for comparison against new field data, and model parameterization or validation.
  •  
23.
  • McGuire, A. David, et al. (författare)
  • The carbon budget of the northern cryosphere region
  • 2010
  • Ingår i: Current Opinion in Environmental Sustainability. - : Elsevier BV. - 1877-3435 .- 1877-3443. ; 2:4, s. 231-236
  • Forskningsöversikt (refereegranskat)abstract
    • The northern cryosphere is undergoing substantial warming of permafrost and loss of sea ice. Release of stored carbon to the atmosphere in response to this change has the potential to affect the global climate system. Studies indicate that the northern cryosphere has been not only a substantial sink for atmospheric CO2 in recent decades, but also an important source of CH4 because of emissions from wetlands and lakes. Analyses suggest that the sensitivity of the carbon cycle of the region over the 21st Century is potentially large, but highly uncertain because numerous pathways of response will be affected by warming. Further research should focus on sensitive elements of the carbon cycle such as the consequences of increased fire disturbance, permafrost degradation, and sea ice loss in the northern cryosphere region.
  •  
24.
  •  
25.
  • Olefeldt, David, et al. (författare)
  • Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 19:2, s. 589-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil temperature, and vegetation composition than to increased availability of organic matter following permafrost thaw.
  •  
26.
  • Parmentier, Frans-Jan, et al. (författare)
  • The impact of lower sea-ice extent on Arctic greenhouse-gas exchange
  • 2013
  • Ingår i: Nature Climate Change. - 1758-6798. ; 3:3, s. 195-202
  • Tidskriftsartikel (refereegranskat)abstract
    • In September 2012, Arctic sea-ice extent plummeted to a new record low: two times lower than the 1979-2000 average. Often, record lows in sea-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced sea-ice cover in the Arctic Ocean for marine-atmosphere CO2 exchange. Sea-ice decline has been connected to increasing air temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing sea-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower sea-ice cover on Arctic greenhouse-gas exchange.
  •  
27.
  • Sayedi, Sayedeh Sara, et al. (författare)
  • Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The continental shelves of the Arctic Ocean and surrounding seas contain large stocks of organic matter (OM) and methane (CH4), representing a potential ecosystem feedback to climate change not included in international climate agreements. We performed a structured expert assessment with 25 permafrost researchers to combine quantitative estimates of the stocks and sensitivity of organic carbon in the subsea permafrost domain (i.e. unglaciated portions of the continental shelves exposed during the last glacial period). Experts estimated that the subsea permafrost domain contains similar to 560 gigatons carbon (GtC; 170-740, 90% confidence interval) in OM and 45 GtC (10-110) in CH4. Current fluxes of CH4 and carbon dioxide (CO2) to the water column were estimated at 18 (2-34) and 38 (13-110) megatons C yr(-1), respectively. Under Representative Concentration Pathway (RCP) RCP8.5, the subsea permafrost domain could release 43 Gt CO2-equivalent (CO(2)e) by 2100 (14-110) and 190 Gt CO(2)e by 2300 (45-590), with similar to 30% fewer emissions under RCP2.6. The range of uncertainty demonstrates a serious knowledge gap but provides initial estimates of the magnitude and timing of the subsea permafrost climate feedback.
  •  
28.
  • James, Stefan, 1964-, et al. (författare)
  • Rationale and design of the DAPA-MI trial : Dapagliflozin in patients without diabetes mellitus with acute myocardial infarction
  • 2023
  • Ingår i: American Heart Journal. - : Elsevier. - 0002-8703 .- 1097-6744. ; 266, s. 188-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Therapies that could further prevent the development of heart failure (HF) and other cardiovascular and metabolic events in patients with recent myocardial infarction (MI) represent a large and unmet medical need. Methods DAPA-MI is a multicenter, parallel-group, registry-based, randomized, double-blind, placebo-controlled phase 3 trial in patients without known diabetes or established HF, presenting with MI and impaired left ventricular systolic function or Q-wave MI. The trial evaluated the effect of dapagliflozin 10 mg vs placebo, given once daily in addition to standard of care therapy, on death, hospitalization for HF (HHF), and other cardiometabolic outcomes. The primary objective of the trial was to determine, using the win-ratio method, if dapagliflozin is superior to placebo by comparing the hierarchical composite outcome of death, HHF, nonfatal MI, atrial fibrillation/flutter, new onset of type 2 diabetes mellitus, HF symptoms as measured by New York Heart Association Functional Classification at last visit, and body weight decrease >= 5% at last visit. Assuming a true win-ratio of 1.20 between dapagliflozin and placebo, 4,000 patients provide a statistical power of 80% for the test of the primary composite outcome. A registry-based randomized controlled trial framework allowed for recruitment, randomization, blinding, and pragmatic data collection of baseline demographics, medications, and clinical outcomes using existing national clinical registries (in Sweden and the UK) integrated with the trial database. Conclusions The trial explores opportunities to improve further the outcome of patients with impaired LV function after MI. The innovative trial design of DAPA-MI, incorporating national clinical registry data, has facilitated efficient patient recruitment as well as outcome ascertainment.
  •  
29.
  • Li, Zhao, et al. (författare)
  • Non-uniform seasonal warming regulates vegetation greening and atmospheric CO2 amplification over northern lands
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The enhanced vegetation growth by climate warming plays a pivotal role in amplifying the seasonal cycle of atmospheric CO2 at northern lands (>50° N) since 1960s. However, the correlation between vegetation growth, temperature and seasonal amplitude of atmospheric CO2 concentration have become elusive with the slowed increasing trend of vegetation growth and weakened temperature control on CO2 uptake since late 1990s. Here, based on in situ atmospheric CO2 concentration records from the Barrow observatory site, we found a slowdown in the increasing trend of the atmospheric CO2 amplitude from 1990s to mid-2000s. This phenomenon was associated with the paused decrease in the minimum CO2 concentration ([CO2]min), which was significantly correlated with the slowdown of vegetation greening and growing-season length extension. We then showed that both the vegetation greenness and growing-season length were positively correlated with spring but not autumn temperature over the northern lands. Furthermore, such asymmetric dependences of vegetation growth upon spring and autumn temperature cannot be captured by the state-of-art terrestrial biosphere models. These findings indicate that the responses of vegetation growth to spring and autumn warming are asymmetric, and highlight the need of improving autumn phenology in the models for predicting seasonal cycle of atmospheric CO2 concentration.
  •  
30.
  • Parmentier, Frans-Jan, et al. (författare)
  • Rising methane emissions from northern wetlands associated with sea ice decline
  • 2015
  • Ingår i: Geophysical Research Letters. - 1944-8007. ; 42:17, s. 7214-7222
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tg CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 31
Typ av publikation
tidskriftsartikel (28)
forskningsöversikt (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
McGuire, A. David (15)
Schuur, Edward A. G. (6)
Koven, Charles (6)
Black, John H, 1949 (5)
Hugelius, Gustaf (5)
Olefeldt, David (5)
visa fler...
Ciais, Philippe (5)
Zhang, Wenxin (5)
Mulas, Giacomo (5)
Roueff, Evelyne (5)
Thomas, Richard D. (5)
Zhang, Yong (5)
Peng, Shushi (5)
Ji, Duoying (5)
Onaka, Takashi (5)
Christensen, Torben (5)
Merino, Pablo (5)
HornekÆr, Liv (5)
Sandstrom, Karin (5)
Habart, Emilie (5)
Peeters, Els (5)
Canin, Amelie (5)
Sidhu, Ameek (5)
Chown, Ryan (5)
Klaassen, Pamela (5)
Trahin, Boris (5)
Alarcon, Felipe (5)
Abergel, Alain (5)
Cami, Jan (5)
Languignon, David (5)
Maragkoudakis, Alexa ... (5)
Okada, Yoko (5)
Pound, Marc W. (5)
Robberto, Massimo (5)
Cernicharo, Jose (5)
Auchettl, Rebecca (5)
Baratta, Giuseppe An ... (5)
Bejaoui, Salma (5)
Bera, Partha P. (5)
Bouwman, Jordy (5)
Brechignac, Philippe (5)
Burkhardt, Andrew (5)
Candian, Alessandra (5)
Chabot, Marin (5)
Chakraborty, Shubhad ... (5)
Champion, Jason (5)
Colgan, Sean W. J. (5)
Cooke, Ilsa R. (5)
Foschino, Sacha (5)
Gusdorf, Antoine (5)
visa färre...
Lärosäte
Lunds universitet (16)
Stockholms universitet (11)
Chalmers tekniska högskola (6)
Uppsala universitet (4)
Umeå universitet (3)
Linköpings universitet (3)
visa fler...
Göteborgs universitet (2)
Karolinska Institutet (2)
Naturhistoriska riksmuseet (2)
Handelshögskolan i Stockholm (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (28)
Medicin och hälsovetenskap (4)
Teknik (1)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy