SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Morris Andrew D) "

Sökning: WFRF:(Morris Andrew D)

  • Resultat 141-148 av 148
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
141.
  • Surakka, Ida, et al. (författare)
  • The impact of low-frequency and rare variants on lipid levels.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:6, s. 589-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing.
  •  
142.
  • Sønderby, Ida E., et al. (författare)
  • 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
  • 2021
  • Ingår i: Translational Psychiatry. - : Nature Publishing Group. - 2158-3188. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
  •  
143.
  • Tang, Wenbo, et al. (författare)
  • Large-Scale Genome-Wide Association Studies and Meta-Analyses of Longitudinal Change in Adult Lung Function
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:7, s. e100776-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. Methods: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. Results: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P = 5.71 x 10(-7)). In addition, meta-analysis using the five cohorts with >= 3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P = 2.18 x 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. Conclusions: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function.
  •  
144.
  • Tapia-Ruiz, Nuria, et al. (författare)
  • 2021 roadmap for sodium-ion batteries
  • 2021
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid-electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology.
  •  
145.
  • van der Laan, Sander W., et al. (författare)
  • Cystatin C and Cardiovascular Disease : A Mendelian Randomization Study
  • 2016
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097 .- 1558-3597. ; 68:9, s. 934-945
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is causal, arises from residual confounding, and/or is a consequence of reverse causation. OBJECTIVES The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally related to CVD in the general population. METHODS We incorporated participant data from 16 prospective cohorts (n = 76,481) with 37,126 measures of cystatin C and added genetic data from 43 studies (n = 252,216) with 63,292 CVD events. We used the common variant rs911119 in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease, ischemic stroke, and heart failure. RESULTS Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p = 2.12 x 10(-14)). The minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50; p = 5.95 x 10(-211)), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not provide evidence fora causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI: 0.82 to 1.22; p = 0,994), which was statistically different from the observational estimate (p = 1.6 x 10(-5)). A causal effect of cystatin C was not detected for any individual component of CVD. CONCLUSIONS Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD.
  •  
146.
  • van der Meer, Dennis, et al. (författare)
  • Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition
  • 2020
  • Ingår i: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 77:4, s. 420-430
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities.Objective: To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance.Design, Setting, and Participants: In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019.Main Outcomes and Measures: The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort.Results: Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks.Conclusions and Relevance: These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
  •  
147.
  • Zhou, Kaixin, et al. (författare)
  • Clinical and genetic determinants of progression of type 2 diabetes : a DIRECT study
  • 2014
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 37:3, s. 718-724
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To identify the clinical and genetic factors that explain why the rate of diabetes progression is highly variable between idividuals following diagnosis of type 2 diabetes.RESEARCH DESIGN AND METHODS: We studied 5,250 patients with type 2 diabetes using comprehensive electronic medical records in Tayside, Scotland, from 1992 onward. We investigated the association of clinical, biochemical, and genetic factors with the risk of progression of type 2 diabetes from diagnosis to the requirement of insulin treatment (defined as insulin treatment or HbA(1c) 8.5% [69 mmol/mol] treated with two or more noninsulin therapies).RESULTSRisk of progression was associated with both low and high BMI. In an analysis stratified by BMI and HbA(1c) at diagnosis, faster progression was independently associated with younger age at diagnosis, higher log triacylglyceride (TG) concentrations (hazard ratio [HR] 1.28 per mmol/L [95% CI 1.15-1.42]) and lower HDL concentrations (HR 0.70 per mmol/L [95% CI 0.55-0.87]). A high Genetic Risk Score derived from 61 diabetes risk variants was associated with a younger age at diagnosis and a younger age when starting insulin but was not associated with the progression rate from diabetes to the requirement of insulin treatment.CONCLUSIONS: Increased TG and low HDL levels are independently associated with increased rate of progression of diabetes. The genetic factors that predispose to diabetes are different from those that cause rapid progression of diabetes, suggesting a difference in biological process that needs further investigation.
  •  
148.
  • Zhou, Kaixin, et al. (författare)
  • Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis.
  • 2014
  • Ingår i: The Lancet Diabetes & Endocrinology. - 2213-8595. ; 2:6, s. 481-487
  • Tidskriftsartikel (refereegranskat)abstract
    • Metformin is a first-line oral agent used in the treatment of type 2 diabetes, but glycaemic response to this drug is highly variable. Understanding the genetic contribution to metformin response might increase the possibility of personalising metformin treatment. We aimed to establish the heritability of glycaemic response to metformin using the genome-wide complex trait analysis (GCTA) method.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 141-148 av 148
Typ av publikation
tidskriftsartikel (141)
forskningsöversikt (3)
annan publikation (1)
Typ av innehåll
refereegranskat (144)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Wareham, Nicholas J. (61)
Lind, Lars (55)
McCarthy, Mark I (55)
Loos, Ruth J F (54)
Langenberg, Claudia (49)
Boehnke, Michael (49)
visa fler...
Gieger, Christian (47)
Morris, Andrew D (47)
Salomaa, Veikko (46)
Palmer, Colin N. A. (46)
Laakso, Markku (45)
Mahajan, Anubha (45)
Stefansson, Kari (43)
Luan, Jian'an (43)
Groop, Leif (42)
Mohlke, Karen L (42)
Uitterlinden, André ... (41)
Hayward, Caroline (41)
Kuusisto, Johanna (40)
Tuomilehto, Jaakko (40)
Rotter, Jerome I. (39)
Frayling, Timothy M (39)
Deloukas, Panos (38)
Hofman, Albert (38)
Hansen, Torben (37)
Thorleifsson, Gudmar (37)
Rudan, Igor (36)
van Duijn, Cornelia ... (36)
Thorsteinsdottir, Un ... (36)
Jackson, Anne U. (36)
Scott, Robert A (35)
Barroso, Ines (35)
Wilson, James F. (35)
Harris, Tamara B (35)
Esko, Tõnu (35)
Perola, Markus (34)
Ingelsson, Erik (34)
Samani, Nilesh J. (34)
Peters, Annette (33)
Froguel, Philippe (33)
Metspalu, Andres (33)
Boerwinkle, Eric (33)
Prokopenko, Inga (33)
Grarup, Niels (32)
Chasman, Daniel I. (32)
Mangino, Massimo (32)
Zhao, Jing Hua (32)
Psaty, Bruce M (32)
Gudnason, Vilmundur (32)
Polasek, Ozren (32)
visa färre...
Lärosäte
Uppsala universitet (84)
Lunds universitet (78)
Karolinska Institutet (56)
Göteborgs universitet (38)
Umeå universitet (34)
Chalmers tekniska högskola (10)
visa fler...
Kungliga Tekniska Högskolan (9)
Stockholms universitet (9)
Högskolan Dalarna (6)
Örebro universitet (3)
Linköpings universitet (3)
Luleå tekniska universitet (1)
Malmö universitet (1)
Handelshögskolan i Stockholm (1)
Karlstads universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (148)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (114)
Naturvetenskap (30)
Teknik (6)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy