SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orho Melander Marju) "

Sökning: WFRF:(Orho Melander Marju)

  • Resultat 41-50 av 340
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Folkersen, Lasse, et al. (författare)
  • Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
  • 2020
  • Ingår i: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:10, s. 1135-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.
  •  
42.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
43.
  • Georgakis, Marios K., et al. (författare)
  • Association of Circulating Monocyte Chemoattractant Protein-1 Levels with Cardiovascular Mortality : A Meta-analysis of Population-Based Studies
  • 2021
  • Ingår i: JAMA Cardiology. - : American Medical Association (AMA). - 2380-6583. ; 6:5, s. 587-592
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Human genetics and studies in experimental models support a key role of monocyte-chemoattractant protein-1 (MCP-1) in atherosclerosis. Yet, the associations of circulating MCP-1 levels with risk of coronary heart disease and cardiovascular death in the general population remain largely unexplored. Objective: To explore whether circulating levels of MCP-1 are associated with risk of incident coronary heart disease, myocardial infarction, and cardiovascular mortality in the general population. Data Sources and Selection: Population-based cohort studies, identified through a systematic review, that have examined associations of circulating MCP-1 levels with cardiovascular end points. Data Extraction and Synthesis: Using a prespecified harmonized analysis plan, study-specific summary data were obtained from Cox regression models after excluding individuals with overt cardiovascular disease at baseline. Derived hazard ratios (HRs) were synthesized using random-effects meta-analyses. Main Outcomes and Measures: Incident coronary heart disease (myocardial infarction, coronary revascularization, and unstable angina), nonfatal myocardial infarction, and cardiovascular death (from cardiac or cerebrovascular causes). Results: The meta-analysis included 7 cohort studies involving 21401 individuals (mean [SD] age, 53.7 [10.2] years; 10012 men [46.8%]). Mean (SD) follow-up was 15.3 (4.5) years (326392 person-years at risk). In models adjusting for age, sex, and race/ethnicity, higher MCP-1 levels at baseline were associated with increased risk of coronary heart disease (HR per 1-SD increment in MCP-1 levels: 1.06 [95% CI, 1.01-1.11]; P =.01), nonfatal myocardial infarction (HR, 1.07 [95% CI, 1.01-1.13]; P =.02), and cardiovascular death (HR, 1.12 [95% CI, 1.05-1.20]; P <.001). In analyses comparing MCP-1 quartiles, these associations followed dose-response patterns. After additionally adjusting for vascular risk factors, the risk estimates were attenuated, but the associations of MCP-1 levels with cardiovascular death remained statistically significant, as did the association of MCP-1 levels in the upper quartile with coronary heart disease. There was no significant heterogeneity; the results did not change in sensitivity analyses excluding events occurring in the first 5 years after MCP-1 measurement, and the risk estimates were stable after additional adjustments for circulating levels of interleukin-6 and high-sensitivity C-reactive protein. Conclusions and Relevance: Higher circulating MCP-1 levels are associated with higher long-term cardiovascular mortality in community-dwelling individuals free of overt cardiovascular disease. These findings provide further support for a key role of MCP-1-signaling in cardiovascular disease..
  •  
44.
  • Georgakis, Marios K., et al. (författare)
  • Circulating Monocyte Chemoattractant Protein-1 and Risk of Stroke : Meta-Analysis of Population-Based Studies Involving 17 180 Individuals
  • 2019
  • Ingår i: Circulation Research. - 0009-7330. ; 125:8, s. 773-782
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Proinflammatory cytokines have been identified as potential targets for lowering vascular risk. Experimental evidence and Mendelian randomization suggest a role of MCP-1 (monocyte chemoattractant protein-1) in atherosclerosis and stroke. However, data from large-scale observational studies are lacking. Objective: To determine whether circulating levels of MCP-1 are associated with risk of incident stroke in the general population. Methods and Results: We used previously unpublished data on 17 180 stroke-free individuals (mean age, 56.7±8.1 years; 48.8% men) from 6 population-based prospective cohort studies and explored associations between baseline circulating MCP-1 levels and risk of any stroke, ischemic stroke, and hemorrhagic stroke during a mean follow-up interval of 16.3 years (280 522 person-years at risk; 1435 incident stroke events). We applied Cox proportional-hazards models and pooled hazard ratios (HRs) using random-effects meta-analyses. After adjustments for age, sex, race, and vascular risk factors, higher MCP-1 levels were associated with increased risk of any stroke (HR per 1-SD increment in ln-transformed MCP-1, 1.07; 95% CI, 1.01-1.14). Focusing on stroke subtypes, we found a significant association between baseline MCP-1 levels and higher risk of ischemic stroke (HR, 1.11 [1.02-1.21]) but not hemorrhagic stroke (HR, 1.02 [0.82-1.29]). The results followed a dose-response pattern with a higher risk of ischemic stroke among individuals in the upper quartiles of MCP-1 levels as compared with the first quartile (HRs, second quartile: 1.19 [1.00-1.42]; third quartile: 1.35 [1.14-1.59]; fourth quartile: 1.38 [1.07-1.77]). There was no indication for heterogeneity across studies, and in a subsample of 4 studies (12 516 individuals), the risk estimates were stable after additional adjustments for circulating levels of IL (interleukin)-6 and high-sensitivity CRP (C-reactive protein). Conclusions: Higher circulating levels of MCP-1 are associated with increased long-term risk of stroke. Our findings along with genetic and experimental evidence suggest that MCP-1 signaling might represent a therapeutic target to lower stroke risk.Visual Overview: An online visual overview is available for this article.
  •  
45.
  • Gorski, Mathias, et al. (författare)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
46.
  • Gorski, Mathias, et al. (författare)
  • Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline
  • 2021
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 99:4, s. 926-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
  •  
47.
  • Gottsäter, Mikael, et al. (författare)
  • A genetic risk score for fasting plasma glucose is independently associatedwith arterial stiffness : A Mendelian randomization study
  • 2018
  • Ingår i: Journal of Hypertension. - 0263-6352. ; 36:4, s. 809-814
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Arterial stiffness is known to be associated with a number of clinical conditions including hypertension, diabetes and dyslipidemia, and may predict cardiovascular events and mortality. However, causal links are hard to establish. Results from genome-wide association studies have identified only a few single nucleotide polymorphisms associated with arterial stiffness, the results have been inconsistent between studies and overlap with other clinical conditions is lacking. Our aim was to investigate a potential shared set of risk single nucleotide polymorphisms between relevant cardiometabolic traits and arterial stiffness. Method: The study population consisted of 2853 individuals (mean age 72 years, 40% men) from the population-based Malmö Diet and Cancer study, Sweden. Carotid-femoral pulse wave velocity, a marker of arterial stiffness, was measured with Sphygmocor. Mendelian randomization analyses were performed using the twostage least square regression and multivariate inversevariance weighted methods. Results: There were positive associations between arterial stiffness and genetic risk scores for type 2 diabetes (β=0.03, P=0.04) and fasting plasma glucose (β=0.03, P=0.03), but not for systolic blood pressure, body mass index, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides. Multivariate inversevariance weighted methods confirmed the significant positive association for fasting plasma glucose β coefficients (P=0.006), but not for type 2 diabetes β coefficients (P=0.88). Conclusion: Genetically elevated fasting plasma glucose, but not genetically elevated risk of type 2 diabetes, was associated with arterial stiffness suggesting a causal stiffening effect of glycemia on the arterial wall, independently of type 2 diabetes.
  •  
48.
  • Grauen Larsen, Helena, et al. (författare)
  • High Plasma sRAGE (Soluble Receptor for Advanced Glycation End Products) Is Associated With Slower Carotid Intima-Media Thickness Progression and Lower Risk for First-Time Coronary Events and Mortality
  • 2019
  • Ingår i: Arteriosclerosis, Thrombosis, and Vascular Biology. - 1524-4636. ; 39:5, s. 925-933
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective- RAGE (receptor for advanced glycation end products) and EMMPRIN (extracellular matrix metalloproteinase inducer) are immune receptors for proinflammatory mediators. These receptors can also be found in a soluble form in the circulation. Soluble RAGE (sRAGE) has shown atheroprotective properties in animal studies, possibly by acting as a decoy receptor for its ligands. Whether sEMMPRIN (soluble EMMPRIN) has similar roles is unknown. We hypothesized that sRAGE and sEMMPRIN might be associated with vascular disease progression, incident coronary events, and mortality. Approach and Results- We measured baseline sRAGE and sEMMPRIN in 4612 cardiovascular disease-free individuals from the population-based Malmö Diet and Cancer cohort. Measurements of intima-media thickness in the common carotid artery were performed at inclusion and after a median of 16.5 years. sRAGE was negatively correlated with carotid intima-media thickness progression, independently of traditional cardiovascular risk factors, kidney function, and hsCRP (high sensitive C-reactive protein). Additionally, sRAGE was associated with decreased risk for major adverse coronary events (hazard ratio=0.90 [0.82-0.97]; P=0.009) and mortality (hazard ratio=0.93 [0.88-0.99]; P=0.011) during a follow-up period of 21 years. The relationship with mortality was independent of all considered potential confounders. We found no correlations between EMMPRIN, intima-media thickness progression, or prognosis. Conclusions- Individuals with high levels of circulating sRAGE have a slower rate of carotid artery disease progression and a better prognosis. Although its predictive value was too weak to promote sRAGE as a useful clinical biomarker in the population, the findings support further research into the potential anti-inflammatory and atheroprotective properties of this soluble receptor.
  •  
49.
  • Grauen Larsen, Helena, et al. (författare)
  • The Gly82Ser polymorphism in the receptor for advanced glycation endproducts increases the risk for coronary events in the general population
  • 2024
  • Ingår i: Scientific Reports. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The receptor for advanced glycation endproducts (RAGE) has pro-inflammatory and pro-atherogenic effects. Low plasma levels of soluble RAGE (sRAGE), a decoy receptor for RAGE ligands, have been associated with increased risk for major adverse coronary events (MACE) in the general population. We performed a genome-wide association study to identify genetic determinants of plasma sRAGE in 4338 individuals from the cardiovascular arm of the Malmö Diet and Cancer study (MDC-CV). Further, we explored the associations between these genetic variants, incident first-time MACE and mortality in 24,640 unrelated individuals of European ancestry from the MDC cohort. The minor alleles of four single nucleotide polymorphisms (SNPs): rs2070600, rs204993, rs116653040, and rs7306778 were independently associated with lower plasma sRAGE. The minor T (vs. C) allele of rs2070600 was associated with increased risk for MACE [HR 1.13 95% CI (1.02–1.25), P = 0.016]. Neither SNP was associated with mortality. This is the largest study to demonstrate a link between a genetic sRAGE determinant and CV risk. Only rs2070600, which enhances RAGE function by inducing a Gly82Ser polymorphism in the ligand-binding domain, was associated with MACE. The lack of associations with incident MACE for the other sRAGE-lowering SNPs suggests that this functional RAGE modification is central for the observed relationship.
  •  
50.
  • Gusarova, Viktoria, et al. (författare)
  • Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiopoietin-like 4 (ANGPTL4) is an endogenous inhibitor of lipoprotein lipase that modulates lipid levels, coronary atherosclerosis risk, and nutrient partitioning. We hypothesize that loss of ANGPTL4 function might improve glucose homeostasis and decrease risk of type 2 diabetes (T2D). We investigate protein-altering variants in ANGPTL4 among 58,124 participants in the DiscovEHR human genetics study, with follow-up studies in 82,766 T2D cases and 498,761 controls. Carriers of p.E40K, a variant that abolishes ANGPTL4 ability to inhibit lipoprotein lipase, have lower odds of T2D (odds ratio 0.89, 95% confidence interval 0.85-0.92, p = 6.3 × 10-10), lower fasting glucose, and greater insulin sensitivity. Predicted loss-of-function variants are associated with lower odds of T2D among 32,015 cases and 84,006 controls (odds ratio 0.71, 95% confidence interval 0.49-0.99, p = 0.041). Functional studies in Angptl4-deficient mice confirm improved insulin sensitivity and glucose homeostasis. In conclusion, genetic inactivation of ANGPTL4 is associated with improved glucose homeostasis and reduced risk of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 340
Typ av publikation
tidskriftsartikel (312)
konferensbidrag (16)
forskningsöversikt (7)
annan publikation (3)
doktorsavhandling (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (332)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Orho-Melander, Marju (340)
Melander, Olle (150)
Groop, Leif (73)
Engström, Gunnar (68)
Ericson, Ulrika (61)
Sonestedt, Emily (51)
visa fler...
Almgren, Peter (47)
Nilsson, Jan (45)
Nilsson, Peter M (38)
Hindy, George (37)
Kathiresan, Sekar (33)
Nilsson, Peter (28)
Schulz, Christina Al ... (28)
Brunkwall, Louise (27)
Franks, Paul W. (25)
Hedblad, Bo (24)
Lind, Lars (23)
Drake, Isabel (21)
Uitterlinden, André ... (21)
Renström, Frida (20)
Rotter, Jerome I. (20)
Loos, Ruth J F (20)
Borné, Yan (19)
Hu, Frank B. (19)
Chasman, Daniel I. (19)
Hofman, Albert (19)
Wirfält, Elisabet (18)
Lyssenko, Valeriya (18)
Hellstrand, Sophie (18)
Gullberg, Bo (18)
Salomaa, Veikko (17)
Hansen, Torben (17)
Goncalves, Isabel (17)
Psaty, Bruce M (17)
Franco, Oscar H. (17)
Ordovás, José M. (17)
Deloukas, Panos (16)
Wareham, Nicholas J. (16)
Laakso, Markku (16)
Pedersen, Oluf (16)
Cupples, L. Adrienne (16)
Yki-Järvinen, Hannel ... (15)
Rukh, Gull (15)
Ridker, Paul M. (15)
Boehnke, Michael (15)
Mohlke, Karen L (15)
Ingelsson, Erik (15)
Edsfeldt, Andreas (15)
Altshuler, David (15)
Lemaitre, Rozenn N. (15)
visa färre...
Lärosäte
Lunds universitet (323)
Uppsala universitet (52)
Karolinska Institutet (48)
Umeå universitet (37)
Göteborgs universitet (29)
Högskolan Dalarna (11)
visa fler...
Örebro universitet (8)
Chalmers tekniska högskola (6)
Linköpings universitet (5)
Malmö universitet (5)
Kungliga Tekniska Högskolan (1)
Gymnastik- och idrottshögskolan (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (336)
Svenska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (336)
Naturvetenskap (5)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy