SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pierson Don) "

Sökning: WFRF:(Pierson Don)

  • Resultat 31-40 av 55
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Meyer, Michael F., et al. (författare)
  • Virtual Growing Pains : Initial Lessons Learned from Organizing Virtual Workshops, Summits, Conferences, and Networking Events during a Global Pandemic
  • 2021
  • Ingår i: Limnology and Oceanography Bulletin. - : John Wiley & Sons. - 1539-607X .- 1539-6088. ; 30:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • For many, 2020 was a year of abrupt professional and personal change. For the aquatic sciences community, many were adapting to virtual formats for conducting and sharing science, while simultaneously learning to live in a socially distanced world. Understandably, the aquatic sciences community postponed or canceled most in-person scientific meetings. Still, many scientific communities either transitioned annual meetings to a virtual format or inaugurated new virtual meetings. Fortunately, increased use of video conferencing platforms, networking and communication applications, and a general comfort with conducting science virtually helped bring the in-person meeting experience to scientists worldwide. Yet, the transition to conducting science virtually revealed new barriers to participation whereas others were lowered. The combined lessons learned from organizing a meeting constitute a necessary knowledge base that will prove useful, as virtual conferences are likely to continue in some form. To concentrate and synthesize these experiences, we showcase how six scientific societies and communities planned, organized, and conducted virtual meetings in 2020. With this consolidated information in hand, we look forward to a future, where scientific meetings embrace a virtual component, so to as help make science more inclusive and global.
  •  
32.
  • Moras, Simone, et al. (författare)
  • Historical modelling of changes in Lake Erken thermal conditions
  • 2019
  • Ingår i: Hydrology and Earth System Sciences. - : COPERNICUS GESELLSCHAFT MBH. - 1027-5606 .- 1607-7938. ; 23:12, s. 5001-5016
  • Tidskriftsartikel (refereegranskat)abstract
    • Historical lake water temperature records are a valuable source of information to assess the influence of climate change on lake thermal structure. However, in most cases such records span a short period of time and/or are incomplete, providing a less credible assessment of change. In this study, the hydrodynamic GOTM (General Ocean Turbulence Model, a hydrodynamic model configured in lake mode) was used to reconstruct daily profiles of water temperature in Lake Erken (Sweden) over the period 1961-2017 using seven climatic parameters as forcing data: wind speed (WS), air temperature (Air T), atmospheric pressure (Air P), relative humidity (RH), cloud cover (CC), precipitation (DP), and shortwave radiation (SWR). The model was calibrated against observed water temperature data collected during the study interval, and the calibrated model revealed a good match between modelled and observed temperature (RMSE = 1.089 degrees C). From the long-term simulations of water temperature, this study focused on detecting possible trends in water temperature over the entire study interval 1961-2017 and in the sub-intervals 1961-1988 and 1989-2017, since an abrupt change in air temperature was detected in 1988. The analysis of the simulated temperature showed that epilimnetic temperature increased on average by 0.444 and 0.792 degrees C per decade in spring and autumn in the sub-interval 1989-2017 Summer epilimnetic temperature increased by 0.351 degrees C per decade over the entire interval 1961-2017. Hypolimnetic temperature increased significantly in spring over the entire interval 1961-2017, by 0.148 and by 0.816 degrees C per decade in autumn in the subinterval 1989-2016. Whole-lake temperature showed a significant increasing trend in the sub-interval 1989-2017 during spring (0.404 degrees C per decade) and autumn (0.789 degrees C per decade, interval 1989-2016), while a significant trend was detected in summer over the entire study interval 1961-2017 (0.239 degrees C per decade). Moreover, this study showed that that changes in the phenology of thermal stratification have occurred over the 57-year period of study. Since 1961, the stability of stratification (Schmidt stability) has increased by 5.365 J M-2 per decade. The duration of thermal stratification has increased by 7.297 d per decade, corresponding to an earlier onset of stratification of similar to 16 d and to a delay of stratification termination of similar to 26 d. The average thermocline depth during stratification became shallower by similar to 1.345 m, and surface-bottom temperature difference increased over time by 0.249 degrees C per decade. The creation of a daily time step water temperature dataset not only provided evidence of changes in Erken thermal structure over the last decades, but is also a valuable resource of information that can help in future research on the ecology of Lake Erken. The use of readily available meteorological data to reconstruct Lake Erken's past water temperature is shown to be a useful method to evaluate long-term changes in lake thermal structure, and it is a method that can be extended to other lakes.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  • Pilla, Rachel M., et al. (författare)
  • Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.
  •  
40.
  • Pilla, Rachel M., et al. (författare)
  • Global data set of long-term summertime vertical temperature profiles in 153 lakes
  • 2021
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 55
Typ av publikation
tidskriftsartikel (46)
konferensbidrag (3)
doktorsavhandling (3)
forskningsöversikt (2)
bok (1)
Typ av innehåll
refereegranskat (48)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Pierson, Don (39)
Pierson, Don C (15)
Weyhenmeyer, Gesa A. (11)
Rusak, James A. (10)
De Eyto, Elvira (9)
Grossart, Hans-Peter (9)
visa fler...
Jennings, Eleanor (9)
Colom-Montero, Willi ... (9)
Woolway, R. Iestyn (8)
Mesman, Jorrit P., 1 ... (8)
Laas, Alo (8)
Verburg, Piet (7)
Adrian, Rita (7)
Ayala, Ana I. (7)
Marce, Rafael (7)
Arvola, Lauri (6)
Stockwell, Jason D. (6)
Isles, Peter D. F. (5)
Flaim, Giovanna (5)
Knoll, Lesley B. (5)
Straile, Dietmar (4)
Williamson, Craig E. (4)
Rimmer, Alon (4)
Jones, Ian D. (4)
Hamilton, David P (4)
Carey, Cayelan C. (4)
Urrutia-Cordero, Pab ... (4)
Anneville, Orlane (4)
Ibelings, Bas W. (4)
Degasperi, Curtis L. (3)
Paterson, Andrew M. (3)
Sommaruga, Ruben (3)
Hansson, Lars-Anders (3)
Sharma, Sapna (3)
Schmid, Martin (3)
TImofeyev, Maxim A. (3)
Nõges, Peeter (3)
Pettersson, Kurt (3)
Bravo, Andrea Garcia (3)
Buck, Moritz (3)
Read, Jordan S. (3)
Chandra, Sudeep (3)
Shatwell, Tom (3)
Yao, Huaxia (3)
de Eyto, E. (3)
Obrador, Biel (3)
Leavitt, Peter R. (3)
Higgins, Scott N. (3)
Maberly, Stephen C. (3)
Mantzouki, Evanthia (3)
visa färre...
Lärosäte
Uppsala universitet (55)
Lunds universitet (4)
Sveriges Lantbruksuniversitet (3)
Umeå universitet (2)
Göteborgs universitet (1)
Linköpings universitet (1)
Språk
Engelska (55)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (45)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy