SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rasmussen A. K.) "

Sökning: WFRF:(Rasmussen A. K.)

  • Resultat 61-70 av 378
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  •  
62.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
63.
  •  
64.
  •  
65.
  •  
66.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
67.
  • Bar, N., et al. (författare)
  • A reference map of potential determinants for the human serum metabolome
  • 2020
  • Ingår i: Nature. - : Nature Research. - 0028-0836 .- 1476-4687. ; 588:7836, s. 135-140
  • Tidskriftsartikel (refereegranskat)abstract
    • The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites—in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites. 
  •  
68.
  • Reimerdes, H., et al. (författare)
  • Overview of the TCV tokamak experimental programme
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with 'small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
  •  
69.
  • van Bragt, JJMH, et al. (författare)
  • Characteristics and treatment regimens across ERS SHARP severe asthma registries
  • 2020
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 55:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the characteristics and treatments of patients with severe asthma across Europe, but both are likely to vary. This is the first study in the European Respiratory Society Severe Heterogeneous Asthma Research collaboration, Patient-centred (SHARP) Clinical Research Collaboration and it is designed to explore these variations. Therefore, we aimed to compare characteristics of patients in European severe asthma registries and treatments before starting biologicals.This was a cross-sectional retrospective analysis of aggregated data from 11 national severe asthma registries that joined SHARP with established patient databases.Analysis of data from 3236 patients showed many differences in characteristics and lifestyle factors. Current smokers ranged from 0% (Poland and Sweden) to 9.5% (Belgium), mean body mass index ranged from 26.2 (Italy) to 30.6 kg·m−2 (the UK) and the largest difference in mean pre-bronchodilator forced expiratory volume in 1 s % predicted was 20.9% (the Netherlands versus Hungary). Before starting biologicals patients were treated differently between countries: mean inhaled corticosteroid dose ranged from 700 to 1335 µg·day−1 between those from Slovenia versus Poland when starting anti-interleukin (IL)-5 antibody and from 772 to 1344 µg·day−1 in those starting anti-IgE (Slovenia versus Spain). Maintenance oral corticosteroid use ranged from 21.0% (Belgium) to 63.0% (Sweden) and from 9.1% (Denmark) to 56.1% (the UK) in patients starting anti-IL-5 and anti-IgE, respectively.The severe asthmatic population in Europe is heterogeneous and differs in both clinical characteristics and treatment, often appearing not to comply with the current European Respiratory Society/American Thoracic Society guidelines definition of severe asthma. Treatment regimens before starting biologicals were different from inclusion criteria in clinical trials and varied between countries.
  •  
70.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 378
Typ av publikation
tidskriftsartikel (325)
konferensbidrag (35)
forskningsöversikt (11)
rapport (2)
annan publikation (2)
bokkapitel (2)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (323)
övrigt vetenskapligt/konstnärligt (53)
populärvet., debatt m.m. (1)
Författare/redaktör
Rasmussen, J. (48)
Nocente, M (45)
Salewski, M (44)
Bolzonella, T (41)
Sauter, O (41)
Tardocchi, M (41)
visa fler...
Sozzi, C (40)
Giovannozzi, E (39)
Mantica, P (39)
Testa, D (39)
Wischmeier, M (39)
Rasmussen, A (39)
Bernert, M (38)
Blanchard, P (38)
Buratti, P (38)
Horacek, J (38)
Kappatou, A (38)
Salmi, A (38)
Valisa, M (38)
Walker, M (38)
Wauters, T (38)
Zagorski, R (38)
Garcia, J. (37)
Brezinsek, S (37)
Coelho, R (37)
Cruz, N (37)
Cseh, G (37)
Czarnecka, A (37)
Piovesan, P (37)
Refy, D (37)
Reiser, D (37)
Villone, F (37)
Zoletnik, S (37)
Zhang, W. (36)
Albanese, R (36)
Ariola, M (36)
Fasoli, A (36)
Frassinetti, Lorenzo (36)
Huber, A (36)
Ivanova-Stanik, I (36)
Mlynar, J (36)
Nabais, F (36)
Naulin, V (36)
Putterich, T (36)
Sieglin, B (36)
Simpson, J (36)
Camenen, Y. (36)
Causa, F. (36)
Ficker, O. (36)
Geiger, B. (36)
visa färre...
Lärosäte
Karolinska Institutet (204)
Uppsala universitet (105)
Lunds universitet (65)
Göteborgs universitet (59)
Kungliga Tekniska Högskolan (52)
Chalmers tekniska högskola (40)
visa fler...
Stockholms universitet (37)
Umeå universitet (25)
Högskolan i Skövde (12)
Linköpings universitet (11)
Örebro universitet (10)
Jönköping University (9)
Sveriges Lantbruksuniversitet (5)
Luleå tekniska universitet (3)
RISE (3)
Naturhistoriska riksmuseet (3)
Malmö universitet (2)
Linnéuniversitetet (2)
Högskolan Dalarna (2)
Högskolan Kristianstad (1)
Mälardalens universitet (1)
Södertörns högskola (1)
Karlstads universitet (1)
Marie Cederschiöld högskola (1)
Sophiahemmet Högskola (1)
visa färre...
Språk
Engelska (378)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (129)
Naturvetenskap (119)
Teknik (26)
Samhällsvetenskap (8)
Humaniora (7)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy