SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Risch A) "

Search: WFRF:(Risch A)

  • Result 111-120 of 154
Sort/group result
   
EnumerationReferenceCoverFind
111.
  • Schuette, Moritz, et al. (author)
  • Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I-IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling 44,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.
  •  
112.
  • Tang, Hongwei, et al. (author)
  • Axonal guidance signaling pathway interacting with smoking in modifying the risk of pancreatic cancer : a gene- and pathway-based interaction analysis of GWAS data
  • 2014
  • In: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 35:5, s. 1039-1045
  • Journal article (peer-reviewed)abstract
    • Cigarette smoking is the best established modifiable risk factor for pancreatic cancer. Genetic factors that underlie smoking-related pancreatic cancer have previously not been examined at the genome-wide level. Taking advantage of the existing Genome-wide association study (GWAS) genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study in 2028 cases and 2109 controls to examine gene-smoking interactions at pathway/gene/single nucleotide polymorphism (SNP) level. Using the likelihood ratio test nested in logistic regression models and ingenuity pathway analysis (IPA), we examined 172 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, 3 manually curated gene sets, 3 nicotine dependency gene ontology pathways, 17 912 genes and 468 114 SNPs. None of the individual pathway/gene/SNP showed significant interaction with smoking after adjusting for multiple comparisons. Six KEGG pathways showed nominal interactions (P < 0.05) with smoking, and the top two are the pancreatic secretion and salivary secretion pathways (major contributing genes: RAB8A, PLCB and CTRB1). Nine genes, i.e. ZBED2, EXO1, PSG2, SLC36A1, CLSTN1, MTHFSD, FAT2, IL10RB and ATXN2 had P interaction < 0.0005. Five intergenic region SNPs and two SNPs of the EVC and KCNIP4 genes had P interaction < 0.00003. In IPA analysis of genes with nominal interactions with smoking, axonal guidance signaling $$\left(P=2.12\times 1{0}^{-7}\right)$$ and α-adrenergic signaling $$\left(P=2.52\times 1{0}^{-5}\right)$$ genes were significantly overrepresented canonical pathways. Genes contributing to the axon guidance signaling pathway included the SLIT/ROBO signaling genes that were frequently altered in pancreatic cancer. These observations need to be confirmed in additional data set. Once confirmed, it will open a new avenue to unveiling the etiology of smoking-associated pancreatic cancer.
  •  
113.
  • Tang, Hongwei, et al. (author)
  • Genes-environment interactions in obesity- and diabetes-associated pancreatic cancer : a GWAS data analysis
  • 2014
  • In: Cancer Epidemiology, Biomarkers and Prevention. - 1055-9965 .- 1538-7755. ; 23:1, s. 98-106
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Obesity and diabetes are potentially alterable risk factors for pancreatic cancer. Genetic factors that modify the associations of obesity and diabetes with pancreatic cancer have previously not been examined at the genome-wide level. METHODS: Using genome-wide association studies (GWAS) genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study of 2,028 cases and 2,109 controls to examine gene-obesity and gene-diabetes interactions in relation to pancreatic cancer risk by using the likelihood-ratio test nested in logistic regression models and Ingenuity Pathway Analysis (IPA). RESULTS: After adjusting for multiple comparisons, a significant interaction of the chemokine signaling pathway with obesity (P = 3.29 × 10(-6)) and a near significant interaction of calcium signaling pathway with diabetes (P = 1.57 × 10(-4)) in modifying the risk of pancreatic cancer were observed. These findings were supported by results from IPA analysis of the top genes with nominal interactions. The major contributing genes to the two top pathways include GNGT2, RELA, TIAM1, and GNAS. None of the individual genes or single-nucleotide polymorphism (SNP) except one SNP remained significant after adjusting for multiple testing. Notably, SNP rs10818684 of the PTGS1 gene showed an interaction with diabetes (P = 7.91 × 10(-7)) at a false discovery rate of 6%. CONCLUSIONS: Genetic variations in inflammatory response and insulin resistance may affect the risk of obesity- and diabetes-related pancreatic cancer. These observations should be replicated in additional large datasets. IMPACT: A gene-environment interaction analysis may provide new insights into the genetic susceptibility and molecular mechanisms of obesity- and diabetes-related pancreatic cancer.
  •  
114.
  • Thrift, Aaron P, et al. (author)
  • Obesity and risk of esophageal adenocarcinoma and Barrett's esophagus : a Mendelian randomization study.
  • 2014
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 106:11
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Data from observational studies suggest that body mass index (BMI) is causally related to esophageal adenocarcinoma (EAC) and its precursor, Barrett's esophagus (BE). However, the relationships may be affected by bias and confounding.METHODS: We used data from the Barrett's and Esophageal Adenocarcinoma Genetic Susceptibility Study: 999 patients with EAC, 2061 patients with BE, and 2169 population controls. We applied the two-stage control function instrumental variable method of the Mendelian randomization approach to estimate the unbiased, unconfounded effect of BMI on risk of EAC and BE. This was performed using a genetic risk score, derived from 29 genetic variants shown to be associated with BMI, as an instrument for lifetime BMI. A higher score indicates propensity to obesity. All tests were two-sided.RESULTS: The genetic risk score was not associated with potential confounders, including gastroesophageal reflux symptoms and smoking. In the instrumental variable analyses (IV), EAC risk increased by 16% (IV-odds ratio [OR] = 1.16, 95% confidence interval [CI] = 1.01 to 1.33) and BE risk increased by 12% (IV-OR = 1.12, 95% CI = 1.00 to 1.25) per 1kg/m(2) increase in BMI. BMI was statistically significantly associated with EAC and BE in conventional epidemiologic analyses.CONCLUSIONS: People with a high genetic propensity to obesity have higher risks of esophageal metaplasia and neoplasia than people with low genetic propensity. These analyses provide the strongest evidence to date that obesity is independently associated with BE and EAC, and is not due to confounding or bias inherent in conventional epidemiologic analyses.
  •  
115.
  • Zhao, Xiaoyu, et al. (author)
  • Identification of genetically predicted DNA methylation markers associated with non–small cell lung cancer risk among 34,964 cases and 448,579 controls
  • 2024
  • In: Cancer. - : John Wiley & Sons. - 0008-543X .- 1097-0142. ; 130:6, s. 913-926
  • Journal article (peer-reviewed)abstract
    • Background: Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non–small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated.Methods: The genetic prediction models for methylation levels based on genetic and methylation data of 1595 subjects from the Framingham Heart Study were established. The prediction models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the methylation markers, which were then replicated in independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics, and transcriptomics and investigation of the potential regulation pathways.Results: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC risk (Bonferroni-corrected p ≤ 1.67 × 10−6) were originally identified. Of these, 16 CpGs remained significant in the validation stage (Bonferroni-corrected p ≤ 1.28 × 10−3), including four novel CpGs. Multi-omics functional annotation showed nine of 16 CpGs were potentially functional biomarkers for NSCLC risk. Thirty-five genes within a 1-Mb window of 12 CpGs that might be involved in regulatory pathways of NSCLC risk were identified.Conclusions: Sixteen promising DNA methylation markers associated with NSCLC were identified. Changes of the methylation level at these CpGs might influence the development of NSCLC by regulating the expression of genes nearby.Plain Language Summary: The epigenetic consequences of DNA methylation in lung cancer development are still largely unknown. This study used summary data of large-scale genome-wide association studies to investigate the associations between genetically predicted levels of methylation biomarkers and non–small cell lung cancer risk at the first time. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. These findings will provide a unique insight into the epigenetic susceptibility mechanisms of lung cancer.
  •  
116.
  • Antoniou, A, et al. (author)
  • Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: A combined analysis of 22 studies
  • 2003
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 72:5, s. 1117-1130
  • Journal article (peer-reviewed)abstract
    • Germline mutations in BRCA1 and BRCA2 confer high risks of breast and ovarian cancer, but the average magnitude of these risks is uncertain and may depend on the context. Estimates based on multiple-case families may be enriched for mutations of higher risk and/or other familial risk factors, whereas risk estimates from studies based on cases unselected for family history have been imprecise. We pooled pedigree data from 22 studies involving 8,139 index case patients unselected for family history with female (86%) or male (2%) breast cancer or epithelial ovarian cancer (12%), 500 of whom had been found to carry a germline mutation in BRCA1 or BRCA2. Breast and ovarian cancer incidence rates for mutation carriers were estimated using a modified segregation analysis, based on the occurrence of these cancers in the relatives of mutation-carrying index case patients. The average cumulative risks in BRCA1-mutation carriers by age 70 years were 65% (95% confidence interval 44%-78%) for breast cancer and 39% (18%-54%) for ovarian cancer. The corresponding estimates for BRCA2 were 45% (31%-56%) and 11% (2.4%-19%). Relative risks of breast cancer declined significantly with age for BRCA1-mutation carriers ( P trend .0012) but not for BRCA2-mutation carriers. Risks in carriers were higher when based on index breast cancer cases diagnosed at <35 years of age. We found some evidence for a reduction in risk in women from earlier birth cohorts and for variation in risk by mutation position for both genes. The pattern of cancer risks was similar to those found in multiple-case families, but their absolute magnitudes were lower, particularly for BRCA2. The variation in risk by age at diagnosis of index case is consistent with the effects of other genes modifying cancer risk in carriers.
  •  
117.
  • Bosse, Yohan, et al. (author)
  • Transcriptome-wide association study reveals candidate causal genes for lung cancer
  • 2020
  • In: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 146:7, s. 1862-1878
  • Journal article (peer-reviewed)abstract
    • We have recently completed the largest GWAS on lung cancer including 29,266 cases and 56,450 controls of European descent. The goal of our study has been to integrate the complete GWAS results with a large‐scale expression quantitative trait loci (eQTL) mapping study in human lung tissues (n = 1,038) to identify candidate causal genes for lung cancer. We performed transcriptome‐wide association study (TWAS) for lung cancer overall, by histology (adenocarcinoma, squamous cell carcinoma and small cell lung cancer) and smoking subgroups (never‐ and ever‐smokers). We performed replication analysis using lung data from the Genotype‐Tissue Expression (GTEx) project. DNA damage assays were performed in human lung fibroblasts for selected TWAS genes. As expected, the main TWAS signal for all histological subtypes and ever‐smokers was on chromosome 15q25. The gene most strongly associated with lung cancer at this locus using the TWAS approach was IREB2 (pTWAS = 1.09E−99), where lower predicted expression increased lung cancer risk. A new lung adenocarcinoma susceptibility locus was revealed on 9p13.3 and associated with higher predicted expression of AQP3 (pTWAS = 3.72E−6). Among the 45 previously described lung cancer GWAS loci, we mapped candidate target gene for 17 of them. The association AQP3‐adenocarcinoma on 9p13.3 was replicated using GTEx (pTWAS = 6.55E−5). Consistent with the effect of risk alleles on gene expression levels, IREB2 knockdown and AQP3 overproduction promote endogenous DNA damage. These findings indicate genes whose expression in lung tissue directly influences lung cancer risk.
  •  
118.
  • Brenner, Darren R, et al. (author)
  • Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia
  • 2015
  • In: Carcinogenesis. - : Oxford University Press. - 0143-3334 .- 1460-2180. ; 36:11, s. 1314-1326
  • Journal article (peer-reviewed)abstract
    • Large-scale genome-wide association studies (GWAS) have likely uncovered all common variants at the GWAS significance level. Additional variants within the suggestive range (0.0001> P > 5×10−8) are, however, still of interest for identifying causal associations. This analysis aimed to apply novel variant prioritization approaches to identify additional lung cancer variants that may not reach the GWAS level. Effects were combined across studies with a total of 33456 controls and 6756 adenocarcinoma (AC; 13 studies), 5061 squamous cell carcinoma (SCC; 12 studies) and 2216 small cell lung cancer cases (9 studies). Based on prior information such as variant physical properties and functional significance, we applied stratified false discovery rates, hierarchical modeling and Bayesian false discovery probabilities for variant prioritization. We conducted a fine mapping analysis as validation of our methods by examining top-ranking novel variants in six independent populations with a total of 3128 cases and 2966 controls. Three novel loci in the suggestive range were identified based on our Bayesian framework analyses: KCNIP4 at 4p15.2 (rs6448050, P = 4.6×10−7) and MTMR2 at 11q21 (rs10501831, P = 3.1×10−6) with SCC, as well as GAREM at 18q12.1 (rs11662168, P = 3.4×10−7) with AC. Use of our prioritization methods validated two of the top three loci associated with SCC (P = 1.05×10−4 for KCNIP4, represented by rs9799795) and AC (P = 2.16×10−4 for GAREM, represented by rs3786309) in the independent fine mapping populations. This study highlights the utility of using prior functional data for sequence variants in prioritization analyses to search for robust signals in the suggestive range.
  •  
119.
  • Byun, Jinyoung, et al. (author)
  • Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer
  • 2022
  • In: Nature Genetics. - : Nature Research. - 1061-4036 .- 1546-1718. ; 54:8, s. 1167-1177
  • Journal article (peer-reviewed)abstract
    • To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
  •  
120.
  • Conen, David, et al. (author)
  • Age-Specific Differences Between Conventional and Ambulatory Daytime Blood Pressure Values
  • 2014
  • In: Hypertension. - 0194-911X .- 1524-4563. ; 64:5, s. 1073-1079
  • Journal article (peer-reviewed)abstract
    • Mean daytime ambulatory blood pressure (BP) values are considered to be lower than conventional BP values, but data on this relation among younger individuals <50 years are scarce. Conventional and 24-hour ambulatory BP were measured in 9550 individuals not taking antihypertensive treatment from 13 population-based cohorts. We compared individual differences between daytime ambulatory and conventional BP according to 10-year age categories. Age-specific prevalences of white coat and masked hypertension were calculated. Among individuals aged 18 to 30, 30 to 40, and 40 to 50 years, mean daytime BP was significantly higher than the corresponding conventional BP (6.0, 5.2, and 4.7 mm Hg for systolic; 2.5, 2.7, and 1.7 mm Hg for diastolic BP; all P<0.0001). In individuals aged 60 to 70 and >= 70 years, conventional BP was significantly higher than daytime ambulatory BP (5.0 and 13.0 mm Hg for systolic; 2.0 and 4.2 mm Hg for diastolic BP; all P<0.0001). The prevalence of white coat hypertension exponentially increased from 2.2% to 19.5% from those aged 18 to 30 years to those aged >= 70 years, with little variation between men and women (8.0% versus 6.1%; P=0.0003). Masked hypertension was more prevalent among men (21.1% versus 11.4%; P<0.0001). The age-specific prevalences of masked hypertension were 18.2%, 27.3%, 27.8%, 20.1%, 13.6%, and 10.2% among men and 9.0%, 9.9%, 12.2%, 11.9%, 14.7%, and 12.1% among women. In conclusion, this large collaborative analysis showed that the relation between daytime ambulatory and conventional BP strongly varies by age. These findings may have implications for diagnosing hypertension and its subtypes in clinical practice.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 111-120 of 154
Type of publication
journal article (149)
conference paper (3)
doctoral thesis (1)
research review (1)
Type of content
peer-reviewed (148)
other academic/artistic (6)
Author/Editor
Brennan, Paul (37)
Risch, HA (36)
Le Marchand, Loïc (35)
Amos, Christopher I. (31)
Aldrich, Melinda C (30)
Liu, Geoffrey (30)
show more...
Risch, Angela (29)
Chen, Chu (29)
Zheng, W. (28)
Chang-Claude, J (28)
Johansson, Mattias (28)
Kiemeney, Lambertus ... (28)
Risch, Harvey A (28)
Christiani, David C. (28)
Field, John K. (28)
Bojesen, Stig E. (27)
Duell, Eric J. (27)
Lazarus, Philip (26)
Albanes, Demetrius (25)
Nevanlinna, H (25)
Johansson, Mikael (25)
Landi, Maria Teresa (25)
Lubinski, J (24)
Shu, XO (23)
Anton-Culver, H (23)
Chenevix-Trench, G (23)
Lam, Stephen (23)
Easton, DF (22)
Grankvist, Kjell (22)
Wentzensen, N (22)
Dennis, J (21)
Chanock, Stephen J (21)
Lambrechts, D (21)
Gronwald, J (21)
Karlan, BY (21)
Goodman, MT (21)
Moysich, KB (21)
Cook, LS (21)
Melander, Olle (20)
Southey, MC (20)
Fasching, PA (20)
Radice, P (20)
Garcia-Closas, M (20)
Jakubowska, A (20)
Pharoah, PDP (20)
Rennert, Gad (20)
Zheng, Wei (20)
Goode, EL (20)
Bracci, Paige M (20)
Li, Donghui (20)
show less...
University
Karolinska Institutet (90)
Lund University (60)
Umeå University (57)
Uppsala University (37)
University of Gothenburg (9)
Royal Institute of Technology (3)
show more...
Stockholm University (3)
Linköping University (2)
show less...
Language
English (154)
Research subject (UKÄ/SCB)
Medical and Health Sciences (104)
Natural sciences (12)
Humanities (2)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view