SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roldin Pontus) "

Sökning: WFRF:(Roldin Pontus)

  • Resultat 11-20 av 70
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Chen, Dean, et al. (författare)
  • A modelling study of OH, NO3 and H2SO4 in 2007- 2018 at SMEAR II, Finland : Analysis of long-term trends
  • 2021
  • Ingår i: Environmental Science: Atmospheres. - : Royal Society of Chemistry (RSC). - 2634-3606. ; 1:6, s. 449-472
  • Tidskriftsartikel (refereegranskat)abstract
    • Major atmospheric oxidants (OH,O3 and NO3) dominate the atmospheric oxidation capacity, while H2SO4 is considered as a main driver for new particle formation. Although numerous studies have investigated the long-term trend of ozone in Europe, the trends of OH, NO3 and H2SO4 at specific sites are to a large extent unknown. The one-dimensional model SOSAA has been applied in several studies at the SMEAR II station and has been validated by measurements in several projects. Here, we applied the SOSAA model for the years 2007-2018 to simulate the atmospheric chemical components, especially the atmospheric oxidants OH and NO3, as well as H2SO4 at SMEAR II. The simulations were evaluated with observations from several shorter and longer campaigns at SMEAR II. Our results show that daily OH increased by 2.39% per year and NO3 decreased by 3.41% per year, with different trends of these oxidants during day and night. On the contrary, daytime sulfuric acid concentrations decreased by 2.78% per year, which correlated with the observed decreasing concentration of newly formed particles in the size range of 3- 25 nm with 1.4% per year at SMEAR II during the years 1997-2012. Additionally, we compared our simulated OH, NO3 and H2SO4 concentrations with proxies, which are commonly applied in case a limited number of parameters are measured and no detailed model simulations are available.
  •  
12.
  • Clusius, Petri, et al. (författare)
  • Atmospherically Relevant Chemistry and Aerosol box model - ARCA box (version 1.2)
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 15:18, s. 7257-7286
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the Atmospherically Relevant Chemistry and Aerosol box model ARCA box (v.1.2.2). It is a zero-dimensional process model with a focus on atmospheric chemistry and submicron aerosol processes, including cluster formation. A novel feature in the model is its comprehensive graphical user interface, allowing for detailed configuration and documentation of the simulation settings, flexible model input, and output visualization. Additionally, the graphical interface contains tools for module customization and input data acquisition. These properties - customizability, ease of implementation and repeatability - make ARCA an invaluable tool for any atmospheric scientist who needs a view on the complex atmospheric aerosol processes. ARCA is based on previous models (MALTE-BOX, ADiC and ADCHEM), but the code has been fully rewritten and reviewed. The gas-phase chemistry module incorporates the Master Chemical Mechanism (MCMv3.3.1) and Peroxy Radical Autoxidation Mechanism (PRAM) but can use any compatible chemistry scheme. ARCA's aerosol module couples the ACDC (Atmospheric Cluster Dynamics Code) in its particle formation module, and the discrete particle size representation includes the fully stationary and fixed-grid moving average methods. ARCA calculates the gas-particle partitioning of low-volatility organic vapours for any number of compounds included in the chemistry, as well as the Brownian coagulation of the particles. The model has parametrizations for vapour and particle wall losses but accepts user-supplied time- and size-resolved input. ARCA is written in Fortran and Python (user interface and supplementary tools), can be installed on any of the three major operating systems and is licensed under GPLv3.
  •  
13.
  • Eriksson, Axel, et al. (författare)
  • Diesel soot aging in urban plumes within hours under cold dark and humid conditions
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322.
  • Tidskriftsartikel (refereegranskat)abstract
    • Fresh and aged diesel soot particles have different impacts on climate and human health. While fresh diesel soot particles are highly aspherical and non-hygroscopic, aged particles are spherical and hygroscopic. Aging and its effect on water uptake also controls the dispersion of diesel soot in the atmosphere. Understanding the timescales on which diesel soot ages in the atmosphere is thus important, yet knowledge thereof is lacking. We show that under cold, dark and humid conditions the atmospheric transformation from fresh to aged soot occurs on a timescale of less than five hours. Under dry conditions in the laboratory, diesel soot transformation is much less efficient. While photochemistry drives soot aging, our data show it is not always a limiting factor. Field observations together with aerosol process model simulations show that the rapid ambient diesel soot aging in urban plumes is caused by coupled ammonium nitrate formation and water uptake.
  •  
14.
  •  
15.
  •  
16.
  • Gunthe, S. S., et al. (författare)
  • Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7324. ; 9:19, s. 7551-7575
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of kappa approximate to 0.1-0.4 (0.16+/-0.06 arithmetic mean and standard deviation). The overall median value of kappa approximate to 0.15 was by a factor of two lower than the values typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (kappa approximate to 0.1 at D approximate to 50 nm; kappa approximate to 0.2 at D approximate to 200 nm), which is in agreement with earlier hygroscopicity tandem differential mobility analyzer (H-TDMA) studies. The CCN measurement results are consistent with aerosol mass spectrometry (AMS) data, showing that the organic mass fraction (f(org)) was on average as high as similar to 90% in the Aitken mode (D <= 100 nm) and decreased with increasing particle diameter in the accumulation mode (similar to 80% at D approximate to 200 nm). The kappa values exhibited a negative linear correlation with f(org) (R-2=0.81), and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: kappa(org)approximate to 0.1 which can be regarded as the effective hygroscopicity of biogenic secondary organic aerosol (SOA) and kappa(inorg)approximate to 0.6 which is characteristic for ammonium sulfate and related salts. Both the size dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (kappa(p)=kappa(org) x f(org)+kappa(inorg) x f(inorg)). The CCN number concentrations predicted with kappa(p) were in fair agreement with the measurement results (similar to 20% average deviation). The median CCN number concentrations at S=0.1-0.82% ranged from N-CCN,N-0.10 approximate to 35 cm(-3) to N-CCN,N-0.82 approximate to 160 cm(-3), the median concentration of aerosol particles larger than 30 nm was N-CN,N-30 approximate to 200 cm(-3), and the corresponding integral CCN efficiencies were in the range of N-CCN,N-0.10/NCN,N-30 approximate to 0.1 to N-CCN,N-0.82/NCN,N-30 approximate to 0.8. Although the number concentrations and hygroscopicity parameters were much lower in pristine rainforest air, the integral CCN efficiencies observed were similar to those in highly polluted megacity air. Moreover, model calculations of N-CCN,N-S assuming an approximate global average value of kappa approximate to 0.3 for continental aerosols led to systematic overpredictions, but the average deviations exceeded similar to 50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (<= 100 cm(-3)). Model calculations assuming aconstant aerosol size distribution led to higher average deviations at all investigated levels of supersaturation: similar to 60% for the campaign average distribution and similar to 1600% for a generic remote continental size distribution. These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols of Amazonia in detailed process models as well as in large-scale atmospheric and climate models.
  •  
17.
  • Hao, Liqing, et al. (författare)
  • Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:23, s. 17705-17716
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing aerosol chemical composition in response to meteorological changes and atmospheric chemistry is important to gain insights into new particle formation mechanisms. A BAECC (Biogenic Aerosols - Effects on Clouds and Climate) campaign was conducted during the spring 2014 at the SMEAR II station (Station for Measuring Forest Ecosystem-Aerosol Relations) in Finland. The particles were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A PBL (planetary boundary layer) dilution model was developed to assist interpreting the measurement results. Right before nucleation events, the mass concentrations of organic and sulfate aerosol species were both decreased rapidly along with the growth of PBL heights. However, the mass fraction of sulfate aerosol of the total aerosol mass was increased, in contrast to a decrease for the organic mass fraction. Meanwhile, an increase in LVOOA (low-volatility oxygenated organic aerosol) mass fraction of the total organic mass was observed, in distinct comparison to a reduction of SVOOA (semi-volatile OOA) mass fraction. Our results demonstrate that, at the beginning of nucleation events, the observed sulfate aerosol mass was mainly driven by vertical turbulent mixing of sulfate-rich aerosols between the residual layer and the newly formed boundary layer, while the condensation of sulfuric acid (SA) played a minor role in interpreting the measured sulfate mass concentration. For the measured organic aerosols, their temporal profiles were mainly driven by dilution from PBL development, organic aerosol mixing in different boundary layers and/or partitioning of organic vapors, but accurate measurements of organic vapor concentrations and characterization on the spatial aerosol chemical composition are required. In general, the observed aerosol particles by AMS are subjected to joint effects of PBL dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During aerosol growth periods in the nighttime, the mass concentrations of organic aerosols and organic nitrate aerosols were both increased. The increase in SVOOA mass correlated well with the calculated increase in condensed HOMs' (highly oxygenated organic molecules) mass. To our knowledge, our results are the first atmospheric observations showing a connection between increase in SVOOA and condensed HOMs during the nighttime.
  •  
18.
  •  
19.
  • Kalivitis, Nikos, et al. (författare)
  • Formation and growth of atmospheric nanoparticles in the eastern Mediterranean : Results from long-term measurements and process simulations
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:4, s. 2671-2686
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric new particle formation (NPF) is a common phenomenon all over the world. In this study we present the longest time series of NPF records in the eastern Mediterranean region by analyzing 10 years of aerosol number size distribution data obtained with a mobility particle sizer. The measurements were performed at the Finokalia environmental research station on Crete, Greece, during the period June 2008-June 2018. We found that NPF took place on 27 % of the available days, undefined days were 23 % and non-event days 50 %. NPF is more frequent in April and May probably due to the terrestrial biogenic activity and is less frequent in August. Throughout the period under study, nucleation was observed also during the night. Nucleation mode particles had the highest concentration in winter and early spring, mainly because of the minimum sinks, and their average contribution to the total particle number concentration was 8 %. Nucleation mode particle concentrations were low outside periods of active NPF and growth, so there are hardly any other local sources of sub-25 nm particles. Additional atmospheric ion size distribution data simultaneously collected for more than 2 years were also analyzed. Classification of NPF events based on ion spectrometer measurements differed from the corresponding classification based on a mobility spectrometer, possibly indicating a different representation of local and regional NPF events between these two measurement data sets. We used the MALTE-Box model for simulating a case study of NPF in the eastern Mediterranean region. Monoterpenes contributing to NPF can explain a large fraction of the observed NPF events according to our model simulations. However the adjusted parameterization resulting from our sensitivity tests was significantly different from the initial one that had been determined for the boreal environment.
  •  
20.
  • Kivekäs, Niku, et al. (författare)
  • Coupling an aerosol box model with one-dimensional flow : A tool for understanding observations of new particle formation events
  • 2016
  • Ingår i: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 1600-0889 .- 0280-6509. ; 68:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zerodimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the 'true' input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 70
Typ av publikation
tidskriftsartikel (52)
konferensbidrag (16)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (60)
övrigt vetenskapligt/konstnärligt (6)
populärvet., debatt m.m. (4)
Författare/redaktör
Roldin, Pontus (70)
Swietlicki, Erik (29)
Eriksson, Axel (20)
Pagels, Joakim (19)
Svenningsson, Birgit ... (18)
Kulmala, Markku (14)
visa fler...
Kristensson, Adam (11)
Löndahl, Jakob (10)
Kulmala, M (9)
Rissler, Jenny (9)
Bohgard, Mats (6)
Kurten, Theo (6)
Ahlberg, Erik (5)
Massling, Andreas (5)
Sporre, Moa (5)
Malmqvist, Ebba (4)
Isaxon, Christina (4)
Friberg, Johan (4)
Krause, Torsten (4)
Frank, Göran (4)
Kritzberg, Emma (4)
Olsson, Lennart (4)
Persson, Andreas (4)
Olenius, Tinja (4)
Worsnop, Douglas R. (4)
Gren, Nina (3)
Ardö, Jonas (3)
Becker, Per (3)
Wiedensohler, A. (3)
Krejci, Radovan (3)
Alcer, David (3)
Carton, Wim (3)
Gabrielsson, Sara (3)
Nilsson, Lovisa (3)
Hallquist, Mattias (3)
Hammarlund, Dan (3)
Johansson, Thomas B (3)
Nicholas, Kimberly (3)
Artaxo, P. (3)
Tunved, Peter (3)
Persson, Tomas (3)
Richter, Jessika Lut ... (3)
Stroh, Emilie (3)
Dahlner, Anders (3)
Bianchi, Federico (3)
Donahue, Neil M. (3)
Jokinen, Tuija (3)
Kajos, Maija (3)
Sarnela, Nina (3)
Christiansen, Sigurd (3)
visa färre...
Lärosäte
Lunds universitet (70)
Stockholms universitet (9)
Göteborgs universitet (4)
IVL Svenska Miljöinstitutet (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
visa fler...
Uppsala universitet (1)
visa färre...
Språk
Engelska (65)
Svenska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (59)
Teknik (19)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy