SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rorsman Patrik) "

Sökning: WFRF:(Rorsman Patrik)

  • Resultat 31-40 av 135
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Briant, L. J. B., et al. (författare)
  • Functional identification of islet cell types by electrophysiological fingerprinting
  • 2017
  • Ingår i: Journal of the Royal Society Interface. - : The Royal Society. - 1742-5689 .- 1742-5662. ; 14:128
  • Tidskriftsartikel (refereegranskat)abstract
    • The alpha-, beta- and delta-cells of the pancreatic islet exhibit different electrophysiological features. We used a large dataset of whole- cell patch- clamp recordings from cells in intactmouse islets (N = 288 recordings) to investigatewhether it is possible to reliably identify cell type (alpha,beta or gamma) based on their electrophysiological characteristics. We quantified 15 electrophysiological variables in each recorded cell. Individually, none of the variables could reliably distinguish the cell types. We therefore constructed a logistic regressionmodel that included all quantified variables, to determine whether they could together identify cell type. The model identified cell typewith 94% accuracy. Thismodelwas applied to a dataset of cells recorded from hyperglycaemic bV59M mice; it correctly identified cell type in all cells and was able to distinguish cells that co-expressed insulin and glucagon. Based on this revised functional identification, we were able to improve conductance-based models of the electrical activity in alpha-cells and generate a model of gamma-cell electrical activity. These new models could faithfully emulate alpha- and gamma-cell electrical activity recorded experimentally.
  •  
32.
  • Chanclón, Belén, et al. (författare)
  • Peripancreatic adipose tissue protects against high-fat-diet-induced hepatic steatosis and insulin resistance in mice
  • 2020
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 44
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/objectives Visceral adiposity is associated with increased diabetes risk, while expansion of subcutaneous adipose tissue may be protective. However, the visceral compartment contains different fat depots. Peripancreatic adipose tissue (PAT) is an understudied visceral fat depot. Here, we aimed to define PAT functionality in lean and high-fat-diet (HFD)-induced obese mice. Subjects/methods Four adipose tissue depots (inguinal, mesenteric, gonadal, and peripancreatic adipose tissue) from chow- and HFD-fed male mice were compared with respect to adipocyte size (n = 4-5/group), cellular composition (FACS analysis, n = 5-6/group), lipogenesis and lipolysis (n = 3/group), and gene expression (n = 6-10/group). Radioactive tracers were used to compare lipid and glucose metabolism between these four fat depots in vivo (n = 5-11/group). To determine the role of PAT in obesity-associated metabolic disturbances, PAT was surgically removed prior to challenging the mice with HFD. PAT-ectomized mice were compared to sham controls with respect to glucose tolerance, basal and glucose-stimulated insulin levels, hepatic and pancreatic steatosis, and gene expression (n = 8-10/group). Results We found that PAT is a tiny fat depot (similar to 0.2% of the total fat mass) containing relatively small adipocytes and many "non-adipocytes" such as leukocytes and fibroblasts. PAT was distinguished from the other fat depots by increased glucose uptake and increased fatty acid oxidation in both lean and obese mice. Moreover, PAT was the only fat depot where the tissue weight correlated positively with liver weight in obese mice (R = 0.65; p = 0.009). Surgical removal of PAT followed by 16-week HFD feeding was associated with aggravated hepatic steatosis (p = 0.008) and higher basal (p < 0.05) and glucose-stimulated insulin levels (p < 0.01). PAT removal also led to enlarged pancreatic islets and increased pancreatic expression of markers of glucose-stimulated insulin secretion and islet development (p < 0.05). Conclusions PAT is a small metabolically highly active fat depot that plays a previously unrecognized role in the pathogenesis of hepatic steatosis and insulin resistance in advanced obesity.
  •  
33.
  • Collins, S. C., et al. (författare)
  • Increased Expression of the Diabetes Gene SOX4 Reduces Insulin Secretion by Impaired Fusion Pore Expansion
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 65:7, s. 1952-1961
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor Sox4 has been proposed to underlie the increased type 2 diabetes risk linked to an intronic single nucleotide polymorphism in CDKAL1. In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca2+ signaling and depolarization-evoked exocytosis. This paradox is explained by a fourfold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements) in which the fusion pore connecting the granule lumen to the exterior expands to a diameter of only 2 nm, which does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n = 63), STXBP6 expression and glucose induced insulin secretion correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-beta H2 interfered with granule emptying and inhibited hormone release, the latter effect reversed by silencing STXBP6. These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by the upregulation of STXBP6 and an increase in kiss- and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy.
  •  
34.
  • De Marinis, Yang, et al. (författare)
  • Enhancement of glucagon secretion in mouse and human pancreatic alpha cells by protein kinase C (PKC) involves intracellular trafficking of PKCalpha and PKCdelta.
  • 2010
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 53:4, s. 717-729
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Protein kinase C (PKC) regulates exocytosis in various secretory cells. Here we studied intracellular translocation of the PKC isoenzymes PKCalpha and PKCdelta, and investigated how activation of PKC influences glucagon secretion in mouse and human pancreatic alpha cells. METHODS: Glucagon release from intact islets was measured in static incubations, and the amounts released were determined by RIA. Exocytosis was monitored as increases in membrane capacitance using the patch-clamp technique. The expression of genes encoding PKC isoforms was analysed by real-time PCR. Intracellular PKC distribution was assessed by confocal microscopy. RESULTS: The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated glucagon secretion from mouse and human islets about fivefold (p < 0.01). This stimulation was abolished by the PKC inhibitor bisindolylmaleimide (BIM). Whereas PMA potentiated exocytosis more than threefold (p < 0.001), BIM inhibited alpha cell exocytosis by 60% (p < 0.05). In mouse islets, the PKC isoenzymes, PKCalpha and PKCbeta1, were highly abundant, while in human islets PKCeta, PKCepsilon and PKCzeta were the dominant variants. PMA stimulation of human alpha cells correlated with the translocation of PKCalpha and PKCdelta from the cytosol to the cell periphery. In the mouse alpha cells, PKCdelta was similarly affected by PMA, whereas PKCalpha was already present at the cell membrane in the absence of PMA. This association of PKCalpha in alpha cells was principally dependent on Ca(2+) influx through the L-type Ca(2+) channel. CONCLUSIONS/INTERPRETATION: PKC activation augments glucagon secretion in mouse and human alpha cells. This effect involves translocation of PKCalpha and PKCdelta to the plasma membrane, culminating in increased Ca(2+)-dependent exocytosis. In addition, we demonstrated that PKCalpha translocation and exocytosis exhibit differential Ca(2+) channel dependence.
  •  
35.
  • De Marinis, Yang, et al. (författare)
  • GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis.
  • 2010
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 11:6, s. 543-553
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 muM) concentrations of forskolin, respectively. The expression of GLP-1 receptors in alpha cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on alpha cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates alpha cell electrical activity, increases [Ca(2+)](i), enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP](i)). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP](i).
  •  
36.
  • Denwood, G., et al. (författare)
  • Glucose stimulates somatostatin secretion in pancreatic delta-cells by cAMP-dependent intracellular Ca-2+ release
  • 2019
  • Ingår i: Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 151:9, s. 1094-1115
  • Tidskriftsartikel (refereegranskat)abstract
    • Somatostatin secretion from pancreatic islet delta-cells is stimulated by elevated glucose levels, but the underlying mechanisms have only partially been elucidated. Here we show that glucose-induced somatostatin secretion (GISS) involves both membrane potential-dependent and -independent pathways. Although glucose-induced electrical activity triggers somatostatin release, the sugar also stimulates GISS via a cAMP-dependent stimulation of CICR and exocytosis of somatostatin. The latter effect is more quantitatively important and in mouse islets depolarized by 70 mM extracellular K+, increasing glucose from 1 mM to 20 mM produced an similar to 3.5-fold stimulation of somatostatin secretion, an effect that was mimicked by the application of the adenylyl cyclase activator forskolin. Inhibiting cAMP-dependent pathways with PKI or ESI-05, which inhibit PKA and exchange protein directly activated by cAMP 2 (Epac2), respectively, reduced glucose/forskolin-induced somatostatin secretion. Ryanodine produced a similar effect that was not additive to that of the PKA or Epac2 inhibitors. Intracellular application of cAMP produced a concentration-dependent stimulation of somatostatin exocytosis and elevation of cytoplasmic Ca2+ ([Ca2+](i)). Both effects were inhibited by ESI-05 and thapsigargin (an inhibitor of SERCA). By contrast, inhibition of PKA suppressed delta-cell exocytosis without affecting [Ca2+](i) . Simultaneous recordings of electrical activity and [Ca2+](i) in delta-cells expressing the genetically encoded Ca2+ indicator GCaMP3 revealed that the majority of glucose-induced [Ca2+](i) spikes did not correlate with delta-cell electrical activity but instead reflected Cat' release from the ER. These spontaneous [Ca2+](i) spikes are resistant to PKI but sensitive to ESI-05 or thapsigargin. We propose that cAMP links an increase in plasma glucose to stimulation of somatostatin secretion by promoting CICR, thus evoking exocytosis of somatostatin-containing secretory vesicles in the delta-cell.
  •  
37.
  • Dwivedi, Om Prakash, et al. (författare)
  • Loss of ZnT8 function protects against diabetes by enhanced insulin secretion
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; , s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived β-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human β cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D.
  •  
38.
  • Dybjer, E., et al. (författare)
  • Incretin hormones, insulin, glucagon and advanced glycation end products in relation to cognitive function in older people with and without diabetes, a population-based study
  • 2020
  • Ingår i: Diabetic Medicine. - : Wiley. - 0742-3071 .- 1464-5491. ; 37:7, s. 1157-1166
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim The aim of this observational study was to investigate relationships between physiological levels of glucometabolic biomarkers and cognitive test results in a population-based setting. Methods Cross-sectional data were obtained from the Swedish population-based Malmo Diet and Cancer Study Re-examination 2007-2012 comprising 3001 older people (mean age 72 years). Through oral glucose tolerance testing (OGTT), fasting and post-load levels of serum insulin, plasma glucagon, serum glucose-dependent insulinotropic peptide (GIP) and plasma glucagon-like peptide-1 (GLP-1) were measured. Insulin resistance and insulin sensitivity levels were calculated. In 454 participants, advanced glycation end products (AGEs) were estimated through skin autofluorescence. Associations between biomarkers and two cognitive tests, the Mini-Mental State Examination (MMSE) and A Quick Test of Cognitive Speed (AQT) respectively, were explored in multiple regression analyses. Results Positive associations following adjustments for known prognostic factors were found between MMSE scores and insulin sensitivity (B = 0.822, P = 0.004), 2-h plasma glucagon (B = 0.596, P = 0.026), 2-h serum GIP (B = 0.581, P = 0.040) and 2-h plasma GLP-1 (B = 0.585, P = 0.038), whereas negative associations were found between MMSE scores and insulin resistance (B = -0.734, P = 0.006), fasting plasma GLP-1 (B = -0.544, P = 0.033) and AGEs (B = -1.459, P = 0.030) were found. Conclusions Higher levels of insulin sensitivity, GIP and GLP-1 were associated with better cognitive outcomes, but AGEs were associated with worse outcomes, supporting evidence from preclinical studies. Glucagon was linked to better outcomes, which could possibly reflect neuroprotective properties similar to the related biomarker GLP-1 which has similar intracellular properties. Longitudinal and interventional studies are needed to further evaluate neuromodulating effects of these biomarkers. presented at the European Association for the Study of Diabetes (EASD) 2019, Barcelona, Spain
  •  
39.
  • Eerola, Kim, 1982, et al. (författare)
  • Hindbrain insulin controls feeding behavior
  • 2022
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 66
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice. Methods: To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used. Results: Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and meta-bolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis. Conclusions: Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis. (c) 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
40.
  • Eliasson, Lena, et al. (författare)
  • Novel aspects of the molecular mechanisms controlling insulin secretion
  • 2008
  • Ingår i: Journal of Physiology. - : Wiley. - 1469-7793 .- 0022-3751. ; 586:14, s. 3313-3324
  • Forskningsöversikt (refereegranskat)abstract
    • Pancreatic beta-cells secrete insulin by Ca2+-dependent exocytosis of secretory granules. beta-cell exocytosis involves SNARE (soluble NSF-attachment protein receptor) proteins similar to those controlling neurotransmitter release and depends on the close association of L-type Ca2+ channels and granules. In most cases, the secretory granules fuse individually but there is ultrastructural and biophysical evidence of multivesicular exocytosis. Estimates of the secretory rate in beta-cells in intact islets indicate a release rate of similar to 15 granules per beta-cell per second, 100-fold higher than that observed in biochemical assays. Single-vesicle capacitance measurements reveal that the diameter of the fusion pore connecting the granule lumen with the exterior is similar to 1.4 nm. This is considerably smaller than the size of insulin and membrane fusion is therefore not obligatorily associated with release of the cargo, a feature that may contribute to the different rates of secretion detected by the biochemical and biophysical measurements. However, small molecules like ATP and GABA, which are stored together with insulin in the granules, are small enough to be released via the narrow fusion pore, which accordingly functions as a molecular sieve. We finally consider the possibility that defective fusion pore expansion accounts for the decrease in insulin secretion observed in pathophysiological states including long-term exposure to lipids.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 135
Typ av publikation
tidskriftsartikel (123)
forskningsöversikt (7)
doktorsavhandling (2)
annan publikation (1)
konferensbidrag (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (130)
övrigt vetenskapligt/konstnärligt (4)
populärvet., debatt m.m. (1)
Författare/redaktör
Rorsman, Patrik (87)
Rorsman, Patrik, 195 ... (43)
Eliasson, Lena (41)
Renström, Erik (34)
Salehi, Albert (21)
Barg, Sebastian (20)
visa fler...
Salehi, S Albert (16)
Galvanovskis, Juris (16)
Zhang, Q. (12)
Göpel, Sven (12)
Zhang, Quan (11)
Ma, Xiaosong (11)
Lundquist, Ingmar (9)
Tarasov, A. I. (9)
Braun, Matthias (9)
Gromada, Jesper (9)
Ashcroft, Frances M. (8)
Ramracheya, Reshma (8)
Bokvist, K (8)
Ramracheya, R. (7)
Chibalina, M. V. (7)
Bengtsson, Martin (7)
Dou, Haiqiang, 1984 (7)
Olofsson, Charlotta (7)
Wendt, Anna (7)
Kanno, T. (6)
Chibalina, Margarita ... (6)
Gromada, J (6)
Berggren, Per-Olof (6)
Wernstedt Asterholm, ... (6)
Obermüller, Stefanie (6)
Clark, A. (5)
Hamilton, Alexander (5)
Mulder, Hindrik (5)
Rosengren, Anders (5)
Holm, Cecilia (5)
Amisten, Stefan (5)
Zhang, Enming (5)
MacDonald, Patrick (5)
Groop, Leif (4)
Rorsman, N. J. G. (4)
Vikman, Jenny (4)
Knudsen, Jakob G. (4)
Wu, Yanling, 1985 (4)
Olofsson, Charlotta ... (4)
Benrick, Anna, 1979- (4)
Johnson, Paul R. V. (4)
Sewing, Sabine (4)
Vergari, E. (4)
Briant, L. J. B. (4)
visa färre...
Lärosäte
Lunds universitet (93)
Göteborgs universitet (45)
Uppsala universitet (30)
Karolinska Institutet (12)
Linköpings universitet (7)
Chalmers tekniska högskola (2)
visa fler...
Umeå universitet (1)
Högskolan i Halmstad (1)
visa färre...
Språk
Engelska (135)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (119)
Naturvetenskap (11)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy