SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Suarez A) "

Sökning: WFRF:(Suarez A)

  • Resultat 61-70 av 702
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Zouganelis, I., et al. (författare)
  • The Solar Orbiter Science Activity Plan : Translating solar and heliospheric physics questions into action
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed.
  •  
62.
  • Crous, P. W., et al. (författare)
  • Fusarium : more than a node or a foot-shaped basal cell
  • 2021
  • Ingår i: Studies in mycology. - : CENTRAALBUREAU SCHIMMELCULTURE. - 0166-0616 .- 1872-9797. ; :98
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
  •  
63.
  • Alcayne, V., et al. (författare)
  • A Segmented Total Energy Detector (sTED) optimized for (n,ϒ) cross-section measurements at n_TOF EAR2
  • 2024
  • Ingår i: Radiation Physics and Chemistry. - : Elsevier. - 0969-806X .- 1879-0895. ; 217
  • Tidskriftsartikel (refereegranskat)abstract
    • The neutron time-of-flight facility n_TOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at n_TOF EAR2.
  •  
64.
  • Balibrea-Correa, J., et al. (författare)
  • First measurement of the 94Nb(n,γ) cross section at the CERN n_TOF facility
  • 2023
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the crucial ingredients for the improvement of stellar models is the accurate knowledge of neutron capture cross-sections for the different isotopes involved in the s-,r- and i- processes. These measurements can shed light on existing discrepancies between observed and predicted isotopic abundances and help to constrain the physical conditions where these reactions take place along different stages of stellar evolution.In the particular case of the radioactive 94Nb, the 94Nb(n,γ) cross-section could play a role in the determination of the s-process production of 94Mo in AGB stars, which presently cannot be reproduced by state-of-the-art stellar models. There are no previous 94Nb(n,γ) experimental data for the resolved and unresolved resonance regions mainly due to the difficulties in producing highquality samples and also due to limitations in conventional detection systems commonly used in time-of-flight experiments.Motivated by this situation, a first measurement of the 94Nb(n,γ) reaction was carried out at CERN n_TOF, thereby exploiting the high luminosity of the EAR2 area in combination with a new detection system of small-volume C6D6-detectors and a high quality 94Nb-sample. The latter was based on hyper-pure 93Nb material activated at the high-flux reactor of ILL-Grenoble. An innovative ring-configuration detection system in close geometry around the capture sample allowed us to significantly enhance the signal-to-background ratio. This set-up was supplemented with two conventional C6D6-detectors and a highresolution LaCl3(Ce)-detector, which will be employed for addressing reliably systematic effects and uncertainties.At the current status of the data analysis, 18 resonance in 94Nb+n have been observed for the first time in the neutron energy range from thermal up to 10 keV.
  •  
65.
  • Domingo-Pardo, C., et al. (författare)
  • Compton imaging for enhanced sensitivity (n,gamma) cross section TOF experiments : Status and prospects
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • Radiative neutron-capture cross sections are of pivotal importance in many fields such as nucle-osynthesis studies or innovative reactor technologies. A large number of isotopes have been measured with high accuracy, but there are still a large number of relevant isotopes whose cross sections could not be experimentally determined yet, at least with sufficient accuracy and completeness, owing to limitations in detection techniques, sample production methods or in the facilities themselves. In the context of the HYMNS (High-sensitivitY Measurements of key stellar Nucleo-Synthesis reactions) project over the last six years we have developed a novel detection technique aimed at background suppression in radiative neutron-capture time-of-flight measurements. This new technique utilizes a complex detection set-up based on position-sensitive radiation-detectors deployed in a Compton-camera array configuration. The latter enables to implement gamma-ray imaging techniques, which help to disentangle true capture events arising from the sample under study and contaminant background events from the surroundings. A summary on the main developments is given in this contribution together with an update on recent experiments at CERN n_TOF and an outlook on future steps.
  •  
66.
  • Domingo-Pardo, C., et al. (författare)
  • The neutron time-of-flight facility n_TOF at CERN Recent facility upgrades and detector developments
  • 2023
  • Ingår i: Journal of Physics, Conference Series. - : Institute of Physics (IOP). - 1742-6588 .- 1742-6596. ; 2586
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on an idea by Carlo Rubbia, the n_TOF facility at CERN has been operating for over 20 years. It is a neutron spallation source, driven by the 20 GeV/c proton beam from the CERN PS accelerator. Neutrons in a very wide energy range (from GeV, down to sub-eV kinetic energy) are generated by a massive Lead spallation target feeding two experimental areas. EAR1, horizonal with respect to the proton beam direction is set at 185 meters from the spallation target. EAR2, on the vertical line from the spallation source, is placed at 20 m. Neutron energies for experiments are selected by the time-of-flight technique (hence the name n_TOF), while the long flight paths ensure a very good energy resolution. Over one hundred experiments have been performed by the n_TOF Collaboration at CERN, with applications ranging from nuclear astrophysics (synthesis of the heavy elements in stars, big bang nucleosynthesis, nuclear cosmo-chronology), to advanced nuclear technologies (nuclear data for applications, nuclear safety), as well as for basic nuclear science (reaction mechanisms, structure and decay of highly excited compound states). During the planned shutdown of the CERN accelerator complex between 2019 and 2021, the facility went through a substantial upgrade with a new target-moderator assembly, refurbishing of the neutron beam lines and experimental areas. An additional measuring and irradiation station (the NEAR Station) has been envisaged and its capabilities for performing material test studies and new physics opportunities are presently explored. An overview of the facility and of the activities performed at CERN is presented in this contribution, with a particular emphasis on the most relevant experiments for nuclear astrophysics.
  •  
67.
  • Dupont, E., et al. (författare)
  • Overview of the dissemination of n_TOF experimental data and resonance parameters
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • The n_TOF neutron time-of-flight facility at CERN is used for nuclear data measurements. The n_TOF Collaboration works closely with the Nuclear Reaction Data Centres (NRDC) network to disseminate the experimental data through the international EXFOR library. In addition, the Collaboration helps integrate the results in the evaluated library projects. The present contribution describes the dissemination status of n_TOF results, their impact on evaluated libraries and ongoing efforts to provide n_TOF resonance parameters in ENDF-6 format for further use by evaluation projects.
  •  
68.
  • Lerendegui-Marco, J., et al. (författare)
  • New detection systems for an enhanced sensitivity in key stellar (n,γ) measurements
  • 2023
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant and massive stars. However, neutron capture measurements via the time-of-flight (TOF) technique on key s-process nuclei are often challenging. Difficulties arise from the limited mass (∼mg) available and the high sample-related background in the case of the unstable s-process branching points. Measurements on neutron magic nuclei, that act as s-process bottlenecks, are affected by low (n,γ) cross sections and a dominant neutron scattering background. Overcoming these experimental challenges requires the combination of facilities with high instantaneous flux, such as n_TOFEAR2, with detection systems with an enhanced detection sensitivity and high counting rate capabilities. This contribution reviews some of the latest detector developments in detection systems for (n,γ) measurements at n_TOF, such as i-TED, an innovative detection system which exploits the Compton imaging technique to reduce the dominant neutron scattering background and s-TED, a highly segmented total energy detector intended for high flux facilities. The discussion will be illustrated with results of the first measurement of key the s-process branching-point reaction 79Se(n,γ).
  •  
69.
  • Mastromarco, M., et al. (författare)
  • Measurement of the Gd-160(n, gamma) cross section at n_TOF and its medical implications
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • Neutron-capture reactions on gadolinium isotopes play an important role in several fields of physics, in particular in nuclear Astrophysics for the understanding of the nucleosynthesis of heavy elements (beyond iron) in stars via the s- and r-processes [1] and in nuclear technology. Another important application of gadolinium is linked to the production of terbium, that offers a set of clinically interesting isotopes for theranostics, characterized by complementary physical decay characteristics. In particular, the low -energy beta(-) emitter terbium-161 is very similar to lutetium-177 in terms of half-life (6.89 d), beta(-) - energy and chemical properties. Being a significant emitter of conversion/Auger electrons, greater therapeutic effect can therefore be expected in comparison to Lu-177 [2, 3]. For this reason, in the last decade, the study of the neutron capture reaction Gd-160(n,,gamma)(161) Gd and the subsequent beta(-) - decay in terbium-161 is getting particular attention. As the nuclear data on the Gd-160 neutron capture reaction are quite scarce and inconsistent, a new measurement of the capture cross section of Gd-160 at the CERN neutron Time -Of-Flight facilty was performed in order to provide high resolution, high -accuracy data on this important reaction, in the energy range from thermal to hundreds of keV. In this contribution, the preliminary results of the n_TOF measurement are presented.
  •  
70.
  • Patronis, N., et al. (författare)
  • Status report of the n_TOF facility after the 2nd CERN long shutdown period
  • 2023
  • Ingår i: EPJ TECHNIQUES AND INSTRUMENTATION. - : Springer Nature. - 2195-7045. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • During the second long shutdown period of the CERN accelerator complex (LS2, 2019-2021), several upgrade activities took place at the n_TOF facility. The most important have been the replacement of the spallation target with a next generation nitrogen-cooled lead target. Additionally, a new experimental area, at a very short distance from the target assembly (the NEAR Station) was established. In this paper, the core commissioning actions of the new installations are described. The improvement in the n_TOF infrastructure was accompanied by several detector development projects. All these upgrade actions are discussed, focusing mostly on the future perspectives of the n_TOF facility. Furthermore, some indicative current and future measurements are briefly reported.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 702
Typ av publikation
tidskriftsartikel (628)
konferensbidrag (49)
forskningsöversikt (13)
bokkapitel (4)
annan publikation (1)
Typ av innehåll
refereegranskat (655)
övrigt vetenskapligt/konstnärligt (40)
Författare/redaktör
Gonzalez Suarez, Reb ... (227)
Brenner, Richard (223)
Ekelöf, Tord (223)
Bergeås Kuutmann, El ... (223)
Ferrari, Arnaud, 197 ... (223)
Ellert, Mattias (222)
visa fler...
Ellajosyula, Venugop ... (222)
Ripellino, Giulia (217)
Zwalinski, L. (215)
Strandberg, Jonas (211)
Mathisen, Thomas (175)
Sunneborn Gudnadotti ... (164)
Shaheen, Rabia (150)
Lund-Jensen, Bengt (149)
Andrean, Stefio Y., ... (149)
Backman, Filip, 1991 ... (149)
Pereira Sanchez, Lau ... (149)
Valdés Santurio, Edu ... (148)
Asimakopoulou, Eleni ... (147)
Lundberg, Olof (139)
Bohm, Christian, 194 ... (139)
Pasuwan, Patrawan, 1 ... (132)
Aad, G (128)
Dimitriadi, Christin ... (125)
Steentoft, Jonas (125)
Shope, David R. (119)
Barranco Navarro, La ... (117)
Hellman, Sten, 1956- (117)
Lou, Xuanhong, 1995- (117)
Milstead, David A., ... (117)
Sjölin, Jörgen, 1968 ... (117)
Ördek, Serhat (117)
Clément, Christophe, ... (116)
Silverstein, Samuel ... (116)
Ingebretsen Carlson, ... (115)
Dunne, Katherine, 19 ... (114)
Hedberg, V. (112)
Konya, B. (112)
Lytken, E. (112)
Poettgen, R. (112)
Smirnova, O. (112)
Leopold, Alexander (112)
Strandberg, Sara, 19 ... (108)
Strübig, Antonia, 19 ... (108)
Richter, Stefan, 198 ... (104)
Skorda, E. (99)
Kim, Dongwon, 1989- (99)
Lee, Suhyun (95)
Moa, Torbjörn (93)
Hellman, Sten (93)
visa färre...
Lärosäte
Uppsala universitet (308)
Stockholms universitet (248)
Lunds universitet (242)
Kungliga Tekniska Högskolan (226)
Karolinska Institutet (220)
Göteborgs universitet (88)
visa fler...
Umeå universitet (33)
Jönköping University (23)
Chalmers tekniska högskola (19)
Högskolan Dalarna (19)
Luleå tekniska universitet (14)
Linköpings universitet (13)
Mittuniversitetet (13)
Sveriges Lantbruksuniversitet (8)
Södertörns högskola (6)
Högskolan i Skövde (6)
Linnéuniversitetet (4)
Örebro universitet (3)
Malmö universitet (3)
Handelshögskolan i Stockholm (2)
Högskolan i Halmstad (1)
Högskolan Väst (1)
Mälardalens universitet (1)
RISE (1)
Karlstads universitet (1)
Naturhistoriska riksmuseet (1)
Marie Cederschiöld högskola (1)
visa färre...
Språk
Engelska (685)
Spanska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (329)
Medicin och hälsovetenskap (181)
Teknik (39)
Samhällsvetenskap (28)
Lantbruksvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy