SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tamburro A.) "

Sökning: WFRF:(Tamburro A.)

  • Resultat 71-75 av 75
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
71.
  • Douglas, T. A., et al. (författare)
  • The use of hydrogel microparticles to sequester and concentrate bacterial antigens in a urine test for Lyme disease
  • 2011
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612 .- 1878-5905. ; 32:4, s. 1157-1166
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogel biomarker capturing microparticles were evaluated as a biomaterial to amplify the sensitivity of urine testing for infectious disease proteins. Lyme disease is a bacterial infection transmitted by ticks. Early diagnosis and prompt treatment of Lyme disease reduces complications including arthritis and cardiac involvement. While a urine test is highly desirable for Lyme disease screening, this has been difficult to accomplish because the antigen is present at extremely low concentrations, below the detection limit of clinical immunoassays. N-isopropylacrylamide (NIPAm) - acrylic acid (AAc) microparticles were covalently functionalized with amine containing dyes via arnidation of carboxylic groups present in the microparticles. The dyes act as affinity baits towards protein analytes in solution. NIPAm/AAc microparticles functionalized with acid black 48 (AB48) mixed with human urine, achieved close to one hundred percent capture and 100 percent extraction yield of the target antigen. In urine, microparticles sequestered and concentrated Lyme disease antigens 100 fold, compared to the absence of microparticles, achieving an immunoassay detection sensitivity of 700 pg/mL in 10 mL urine. Antigen present in a single infected tick could be readily detected following microparticle sequestration. Hydrogel microparticles functionalized with high affinity baits can dramatically increase the sensitivity of urinary antigen tests for infectious diseases such as Lyme disease. These findings justify controlled clinical studies evaluating the sensitivity and precision of Lyme antigen testing in urine.
  •  
72.
  • Meani, F, et al. (författare)
  • Investigation of the Ovarian and Prostate Cancer Peptidome for Candidate Early Detection Markers Using a Novel Nanoparticle Biomarker Capture Technology
  • 2010
  • Ingår i: AAPS Journal. - : Springer Science and Business Media LLC. - 1550-7416. ; 2:4, s. 504-518
  • Tidskriftsartikel (refereegranskat)abstract
    • Current efforts to identify protein biomarkers of disease use mainly mass spectrometry (MS) to analyze tissue and blood specimens. The low-molecular-weight "peptidome" is an attractive information archive because of the facile nature by which the low-molecular-weight information freely crosses the endothelial cell barrier of the vasculature, which provides opportunity to measure disease microenvironment-associated protein analytes secreted or shed into the extracellular interstitium and from there into the circulation. However, identifying useful protein biomarkers (peptidomic or not) which could be useful to detect early detection/monitoring of disease, toxicity, doping, or drug abuse has been severely hampered because even the most sophisticated, high-resolution MS technologies have lower sensitivities than those of the immunoassays technologies now routinely used in clinical practice. Identification of novel low abundance biomarkers that are indicative of early-stage events that likely exist in the sub-nanogram per milliliter concentration range of known markers, such as prostate-specific antigen, cannot be readily detected by current MS technologies. We have developed a new nanoparticle technology that can, in one step, capture, concentrate, and separate the peptidome from high-abundance blood proteins. Herein, we describe an initial pilot study whereby the peptidome content of ovarian and prostate cancer patients is investigated with this method. Differentially abundant candidate peptidome biomarkers that appear to be specific for early-stage ovarian and prostate cancer have been identified and reveal the potential utility for this new methodology
  •  
73.
  • Fredolino, C, et al. (författare)
  • Nanoparticles technology : Amplifying the effective sensitivity of biomarker detection to create a urine test for hGH
  • 2009
  • Ingår i: Drug Test Analysis. - 1942-7611. ; 1:9-10, s. 447-454
  • Tidskriftsartikel (refereegranskat)abstract
    • Several clinical-grade immunoassays exist for the specific measurement of hGH or its isoforms in blood but there is an urgent need to apply these same reliable assays to the measurement of hGH in urine as a preferred 'non-invasive' biofluid. Unfortunately, conventional hGH immunoassays cannot attain the sensitivity required to detect the low concentrations of hGH in urine. The lowest limit of sensitivity for existing hGH immunoassays is >50 pg/mL, while the estimated concentration of urinary hGH is about 1 pg/m-50 times lower than the sensitivity threshold. We have created novel N-isopropylacrylamide (NIPAm)-based hydrogel nanoparticles functionalized with an affinity bait. When introduced into an analyte-containing solution, the nanoparticles can perform, in one step, (1) complete harvesting of all solution phase target analytes, (2) full protection of the captured analyte from degradation and (3) sequestration of the analyte, effectively increasing the analyte concentration up to a hundredfold. N-isopropylacrylamide nanoparticles functionalized with Cibacron Blue F3GA bait have been applied to raise the concentration of urinary hGH into the linear range of clinical grade immunoassays. This technology now provides an opportunity to evaluate the concentration of hGH in urine with high precision and accuracy
  •  
74.
  • Tamburro, Davide, et al. (författare)
  • Multifunctional Core-Shell Nanoparticles : Discovery of Previously Invisible Biomarkers
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 133:47, s. 19178-19188
  • Tidskriftsartikel (refereegranskat)abstract
    • Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core-shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (K(D) < 10(-11) M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.
  •  
75.
  • Tamburro, Davide, et al. (författare)
  • Mass Spectrometry-based characterization of the vitreous phosphoproteome
  • 2010
  • Ingår i: Proteomics Clinical Applications. - : Wiley. - 1862-8346. ; 4:10-11, s. 839-846
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The vitreous gel is a highly hydrated extracellular matrix containing many proteins. These proteins are likely accumulated in the vitreous by local secretion, filtration from the blood, or diffusion from the surrounding tissues and vasculature, and may be altered in disease state. In the last several years, several reports of large-scale profiling of vitreous proteins have been published; however, there is little information on the characterization of the phosphoproteome of vitreous. Here, we sought to identify phosphopeptides and their phosphorylation sites from vitreous. Experimental design: We used titanium dioxide (TiO2) to enrich phosphopeptides from vitreous and identified them by LC-MS/MS. Results: We identified 85 unique phosphopeptides and the phosphorylation sites from 44 proteins. Conclusions and clinical relevance: We present a method for characterization of phosphoproteome from vitreous samples using current MS technologies and yielded an initial assessment of the phosphoprotein/peptide content of human vitreous, thus providing important biological information toward further understanding of the post-translational modifications of vitreous proteins and their functional significance in disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 71-75 av 75

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy