SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uitterlinden André G) srt2:(2015-2019)"

Sökning: WFRF:(Uitterlinden André G) > (2015-2019)

  • Resultat 31-40 av 64
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Feitosa, Mary F., et al. (författare)
  • Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries
  • 2018
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in approximate to 131 K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P <1.0 x 10(-5)). In Stage 2, these SNVs were tested for independent external replication in individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10(-8)). For African ancestry samples, we detected 18 potentially novel BP loci (P< 5.0 x 10(-8)) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2 have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
  •  
32.
  • Fretts, Amanda M., et al. (författare)
  • Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores : a meta-analysis of 50,345 Caucasians
  • 2015
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 102:5, s. 1266-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined l) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049-1n-pmon (95% CI: 0.035, 0.063-1n-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic loci known to influence fasting glucose or insulin resistance. Conclusion: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms.
  •  
33.
  • Gorski, Mathias, et al. (författare)
  • 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10(-8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.
  •  
34.
  • Huang, Tao, et al. (författare)
  • Dairy Consumption and Body Mass Index Among Adults : Mendelian Randomization Analysis of 184802 Individuals from 25 Studies
  • 2018
  • Ingår i: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 64:1, s. 183-191
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Associations between dairy intake and body mass index (BMI) have been inconsistently observed in epidemiological studies, and the causal relationship remains ill defined.METHODS: We performed Mendelian randomization (MR) analysis using an established dairy intake-associated genetic polymorphism located upstream of the lactase gene (LCT-13910 C/T, rs4988235) as an instrumental variable (IV). Linear regression models were fitted to analyze associations between (a) dairy intake and BMI, (b) rs4988235 and dairy intake, and (c) rs4988235 and BMI in each study. The causal effect of dairy intake on BMI was quantified by IV estimators among 184802 participants from 25 studies.RESULTS: Higher dairy intake was associated with higher BMI (β = 0.03 kg/m2 per serving/day; 95% CI, 0.00–0.06; P = 0.04), whereas the LCT genotype with 1 or 2 T allele was significantly associated with 0.20 (95% CI, 0.14–0.25) serving/day higher dairy intake (P = 3.15 × 10−12) and 0.12 (95% CI, 0.06–0.17) kg/m2 higher BMI (P = 2.11 × 10−5). MR analysis showed that the genetically determined higher dairy intake was significantly associated with higher BMI (β = 0.60 kg/m2 per serving/day; 95% CI, 0.27–0.92; P = 3.0 × 10−4).CONCLUSIONS: The present study provides strong evidence to support a causal effect of higher dairy intake on increased BMI among adults.
  •  
35.
  • Huffman, Jennifer E., et al. (författare)
  • Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, P-inter= 2.6 x 10(-8)). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDAR-ADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10(-8)), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10(-8)), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10(-4)). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment.
  •  
36.
  • Hägg, Sara, et al. (författare)
  • Adiposity as a cause of cardiovascular disease : a Mendelian randomization study
  • 2015
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 44:2, s. 578-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adiposity, as indicated by body mass index (BMI), has been associated with risk of cardiovascular diseases in epidemiological studies. We aimed to investigate if these associations are causal, using Mendelian randomization (MR) methods. Methods: The associations of BMI with cardiovascular outcomes [coronary heart disease (CHD), heart failure and ischaemic stroke], and associations of a genetic score (32 BMI single nucleotide polymorphisms) with BMI and cardiovascular outcomes were examined in up to 22 193 individuals with 3062 incident cardiovascular events from nine prospective follow-up studies within the ENGAGE consortium. We used random-effects meta-analysis in an MR framework to provide causal estimates of the effect of adiposity on cardiovascular outcomes. Results: There was a strong association between BMI and incident CHD (HR = 1.20 per SD-increase of BMI, 95% CI, 1.12-1.28, P = 1.9.10(-7)), heart failure (HR = 1.47, 95% CI, 1.35-1.60, P = 9.10(-19)) and ischaemic stroke (HR = 1.15, 95% CI, 1.06-1.24, P = 0.0008) in observational analyses. The genetic score was robustly associated with BMI (beta = 0.030 SD-increase of BMI per additional allele, 95% CI, 0.028-0.033, P = 3.10(-107)). Analyses indicated a causal effect of adiposity on development of heart failure (HR = 1.93 per SD-increase of BMI, 95% CI, 1.12-3.30, P = 0.017) and ischaemic stroke (HR = 1.83, 95% CI, 1.05-3.20, P = 0.034). Additional cross-sectional analyses using both ENGAGE and CARDIoGRAMplusC4D data showed a causal effect of adiposity on CHD. Conclusions: Using MR methods, we provide support for the hypothesis that adiposity causes CHD, heart failure and, previously not demonstrated, ischaemic stroke.
  •  
37.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
  •  
38.
  • Nettleton, Jennifer A, et al. (författare)
  • Gene x dietary pattern interactions in obesity : analysis of up to 68 317 adults of European ancestry
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 24:16, s. 4728-4738
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is highly heritable. Genetic variants showing robust associationswith obesity traits have been identified through genome wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist-hip ratio (WHR)-associated single nucleotide polymorphismswere genotyped, and genetic risk scores (GRS) were calculated in 18 cohorts of European ancestry (n = 68 317). Diet score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations of each GRS with BMI and BMI-adjustedWHR and (b) diet score modification of genetic associations with BMI and BMI-adjusted WHR. Nominally significant interactions (P = 0.006-0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS), two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective BMI-adjustedWHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.
  •  
39.
  • Roselli, Carolina, et al. (författare)
  • Multi-ethnic genome-wide association study for atrial fibrillation
  • 2018
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:9, s. 1225-1233
  • Tidskriftsartikel (refereegranskat)abstract
    • Atrial fibrillation (AF) affects more than 33 million individuals worldwide(1) and has a complex heritability(2). We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.
  •  
40.
  • Schmidt, Amand F., et al. (författare)
  • PCSK9 genetic variants and risk of type 2 diabetes : a mendelian randomisation study
  • 2017
  • Ingår i: The Lancet Diabetes and Endocrinology. - : ELSEVIER SCIENCE INC. - 2213-8587 .- 2213-8595. ; 5:2, s. 97-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 diabetes, which in no way off sets their substantial benefi ts. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 diabetes and related biomarkers to gauge the likely eff ects of PCSK9 inhibitors on diabetes risk. Methods In this mendelian randomisation study, we used data from cohort studies, randomised controlled trials, case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, fasting blood glucose, HbA 1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using a standardised analysis plan, meta-analyses, and weighted gene-centric scores. Findings Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses of four independent PCSK9 variants (rs11583680, rs11591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower LDL cholesterol showed associations with increased fasting glucose (0.09 mmol/L, 95% CI 0.02 to 0.15), bodyweight (1.03 kg, 0.24 to 1.82), waist-to-hip ratio (0.006, 0.003 to 0.010), and an odds ratio for type diabetes of 1.29 (1.11 to 1.50). Based on the collected data, we did not identify associations with HbA 1c (0.03%, -0.01 to 0.08), fasting insulin (0.00%, -0.06 to 0.07), and BMI (0.11 kg/m(2), -0.09 to 0.30). Interpretation PCSK9 variants associated with lower LDL cholesterol were also associated with circulating higher fasting glucose concentration, bodyweight, and waist-to-hip ratio, and an increased risk of type 2 diabetes. In trials of PCSK9 inhibitor drugs, investigators should carefully assess these safety outcomes and quantify the risks and benefi ts of PCSK9 inhibitor treatment, as was previously done for statins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 64
Typ av publikation
tidskriftsartikel (64)
Typ av innehåll
refereegranskat (64)
Författare/redaktör
Uitterlinden, André ... (61)
Hofman, Albert (47)
Franco, Oscar H. (37)
Gudnason, Vilmundur (34)
Harris, Tamara B (33)
Chasman, Daniel I. (30)
visa fler...
van Duijn, Cornelia ... (30)
Rotter, Jerome I. (30)
Liu, Yongmei (29)
Psaty, Bruce M (29)
Teumer, Alexander (29)
Ridker, Paul M. (28)
Hayward, Caroline (28)
Esko, Tõnu (26)
Raitakari, Olli T (25)
Gieger, Christian (24)
Launer, Lenore J (24)
Loos, Ruth J F (24)
Metspalu, Andres (23)
Rivadeneira, Fernand ... (23)
Boerwinkle, Eric (23)
van der Harst, Pim (23)
Smith, Albert V (23)
Salomaa, Veikko (22)
Lind, Lars (22)
Wareham, Nicholas J. (22)
Feitosa, Mary F. (22)
Rudan, Igor (21)
Amin, Najaf (21)
Strauch, Konstantin (21)
Luan, Jian'an (21)
Deary, Ian J (21)
Hansen, Torben (20)
Langenberg, Claudia (20)
Mahajan, Anubha (20)
Polasek, Ozren (20)
Taylor, Kent D. (20)
Zhang, Weihua (20)
Perola, Markus (19)
Rose, Lynda M (19)
Scott, Robert A (19)
Peters, Annette (19)
Samani, Nilesh J. (19)
Dehghan, Abbas (19)
Morris, Andrew P. (19)
Franks, Paul W. (18)
McCarthy, Mark I (18)
Boehnke, Michael (18)
Lehtimaki, Terho (18)
Lu, Yingchang (18)
visa färre...
Lärosäte
Uppsala universitet (36)
Lunds universitet (32)
Karolinska Institutet (26)
Umeå universitet (25)
Göteborgs universitet (15)
Stockholms universitet (4)
visa fler...
Handelshögskolan i Stockholm (4)
Högskolan Dalarna (4)
Mittuniversitetet (2)
Örebro universitet (1)
visa färre...
Språk
Engelska (64)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (60)
Naturvetenskap (11)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy