SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vaag A) "

Sökning: WFRF:(Vaag A)

  • Resultat 21-30 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  •  
22.
  • Friedrichsen, M., et al. (författare)
  • Differential aetiology and impact of phosphoinositide 3-kinase (PI3K) and Akt signalling in skeletal muscle on in vivo insulin action
  • 2010
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 53:9, s. 1998-2007
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Insulin resistance in skeletal muscle is a key factor in the development of type 2 diabetes and although some studies indicate that this could be partly attributed to reduced content and activity of various proximal and distal insulin signalling molecules, consensus is lacking. We therefore aimed to investigate the regulation of proximal insulin signalling in skeletal muscle and its effect on glucose metabolism in a large non-diabetic population. Methods We examined 184 non-diabetic twins with gold-standard techniques including the euglycaemic-hyperinsulinaemic clamp. Insulin signalling was evaluated at three key levels, i.e. the insulin receptor, IRS-1 and V-akt murine thymoma viral oncogene (Akt) levels, employing kinase assays and phospho-specific western blotting. Results Proximal insulin signalling was not associated with obesity, age or sex. However, birthweight was positively associated with IRS-1-associated phosphoinositide 3-kinase (PI3K; IRS-1-PI3K) activity (p=0.04); maximal aerobic capacity ((V) over dotO(2max)), paradoxically, was negatively associated with IRS-1-PI3K (p=0.02) and Akt2 activity (p=0.01). Additionally, we found low heritability estimates for most measures of insulin signalling activity. Glucose disposal was positively associated with Akt-308 phosphorylation (p<0.001) and Akt2 activity (p=0.05), but not with insulin receptor tyrosine kinase or IRS-1-PI3K activity. Conclusions/interpretation With the exception of birthweight, 'classical' modifiers of insulin action, including genetics, age, sex, obesity and (V) over dotO(2max), do not seem to mediate their most central effects on whole-body insulin sensitivity through modulation of proximal insulin signalling in skeletal muscle. We also demonstrated an association between Akt activity and in vivo insulin sensitivity, suggesting a role of Akt in control of in vivo insulin resistance and potentially in type 2 diabetes.
  •  
23.
  • Friedrichsen, Martin, et al. (författare)
  • Dissociation between Skeletal Muscle Inhibitor-{kappa}B Kinase/Nuclear Factor-{kappa}B Pathway Activity and Insulin Sensitivity in Nondiabetic Twins.
  • 2010
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 95:1, s. 414-421
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Several studies suggest a link between increased activity of the inflammatory inhibitor-kappaB kinase/nuclear factor-kappaB (IKK/NF-kappaB) pathway in skeletal muscle and insulin resistance. Objective: We aimed to study the regulation of skeletal muscle IKK/NF-kappaB pathway activity as well as the association with glucose metabolism and skeletal muscle insulin signaling. Methods: The study population included a metabolically well-characterized cohort of young and elderly predominantly nondiabetic twins (n = 181). Inhibitor-kappaBbeta (IkappaBbeta) protein levels are negatively associated with IKK/NF-kappaB pathway activity and were used to evaluate pathway activity with p65 levels included as loading control. This indirect measure for IKK/NF-kappaB pathway activity was validated by a p65 binding assay. Results: Evaluating the effects of heritability, age, sex, obesity, aerobic capacity, and several hormonal factors (eg insulin and TNF-alpha), only sex and age were significant predictors of IkappaBbeta to p65 ratio (28% decreased ratio in the elderly, P < 0.01, and 49% increased in males P < 0.01). IkappaBbeta to p65 ratio was unrelated to peripheral insulin sensitivity (P = 0.51) and in accordance with this also unrelated to proximal insulin signaling (P = 0.81). Although no association was seen with plasma glucose after oral glucose challenge, there was a tendency for lower IkappaBbeta to p65 ratio (adjusted for age and sex) in subjects with impaired as opposed to normal glucose tolerance (P = 0.055). Conclusions: Altogether the subtle elevated IKK/NF-kappaB pathway activity seen in glucose-intolerant subjects suggests that IKK/NF-kappaB pathway activation may be secondary to impaired glucose tolerance and that skeletal muscle IKK/NF-kappaB pathway activity is unlikely to play any major role in the control of skeletal muscle insulin action in nondiabetic subjects.
  •  
24.
  • Gillberg, Linn, et al. (författare)
  • Adipose tissue transcriptomics and epigenomics in low birthweight men and controls : role of high-fat overfeeding
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:4, s. 799-812
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Individuals who had a low birthweight (LBW) are at an increased risk of insulin resistance and type 2 diabetes when exposed to high-fat overfeeding (HFO). We studied genome-wide mRNA expression and DNA methylation in subcutaneous adipose tissue (SAT) after 5 days of HFO and after a control diet in 40 young men, of whom 16 had LBW. Methods mRNA expression was analysed using Affymetrix Human Gene 1.0 ST arrays and DNA methylation using Illumina 450K BeadChip arrays. Results We found differential DNA methylation at 53 sites in SAT from LBW vs normal birthweight (NBW) men (false discovery rate < 5%), including sites in the FADS2 and CPLX1 genes previously associated with type 2 diabetes. When we used reference-free cell mixture adjustments to potentially adjust for cell composition, 4,323 sites had differential methylation in LBW vs NBW men. However, no differences in SAT gene expression levels were identified between LBW and NBW men. In the combined group of all 40 participants, 3,276 genes (16.5%) were differentially expressed in SAT after HFO (false discovery rate < 5%) and there was no difference between LBW men and controls. The most strongly upregulated genes were ELOVL6, FADS2 and NNAT; in contrast, INSR, IRS2 and the SLC27A2 fatty acid transporter showed decreased expression after HFO. Interestingly, SLC27A2 expression correlated negatively with diabetes- and obesity-related traits in a replication cohort of 142 individuals. DNA methylation at 652 CpG sites (including in CDK5, IGFBP5 and SLC2A4) was altered in SAT after overfeeding in this and in another cohort. Conclusions/interpretation Young men who had a LBW exhibit epigenetic alterations in their adipose tissue that potentially influence insulin resistance and risk of type 2 diabetes. Short-term overfeeding influences gene transcription and, to some extent, DNA methylation in adipose tissue; there was no major difference in this response between LBW and control participants.
  •  
25.
  •  
26.
  • Hansen, Aleksander L., et al. (författare)
  • Birthweight is associated with clinical characteristics in people with recently diagnosed type 2 diabetes
  • 2023
  • Ingår i: Diabetologia. - 0012-186X. ; 66:9, s. 1680-1692
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Low birthweight is a risk factor for type 2 diabetes but it is unknown whether low birthweight is associated with distinct clinical characteristics at disease onset. We examined whether a lower or higher birthweight in type 2 diabetes is associated with clinically relevant characteristics at disease onset. Methods: Midwife records were traced for 6866 individuals with type 2 diabetes in the Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort. Using a cross-sectional design, we assessed age at diagnosis, anthropomorphic measures, comorbidities, medications, metabolic variables and family history of type 2 diabetes in individuals with the lowest 25% of birthweight (<3000 g) and highest 25% of birthweight (>3700 g), compared with a birthweight of 3000–3700 g as reference, using log-binomial and Poisson regression. Continuous relationships across the entire birthweight spectrum were assessed with linear and restricted cubic spline regression. Weighted polygenic scores (PS) for type 2 diabetes and birthweight were calculated to assess the impact of genetic predispositions. Results: Each 1000 g decrease in birthweight was associated with a 3.3 year (95% CI 2.9, 3.8) younger age of diabetes onset, 1.5 kg/m2 (95% CI 1.2, 1.7) lower BMI and 3.9 cm (95% CI 3.3, 4.5) smaller waist circumference. Compared with the reference birthweight, a birthweight of <3000 g was associated with more overall comorbidity (prevalence ratio [PR] for Charlson Comorbidity Index Score ≥3 was 1.36 [95% CI 1.07, 1.73]), having a systolic BP ≥155 mmHg (PR 1.26 [95% CI 0.99, 1.59]), lower prevalence of diabetes-associated neurological disease, less likelihood of family history of type 2 diabetes, use of three or more glucose-lowering drugs (PR 1.33 [95% CI 1.06, 1.65]) and use of three or more antihypertensive drugs (PR 1.09 [95% CI 0.99, 1.20]). Clinically defined low birthweight (<2500 g) yielded stronger associations. Most associations between birthweight and clinical characteristics appeared linear, and a higher birthweight was associated with characteristics mirroring lower birthweight in opposite directions. Results were robust to adjustments for PS representing weighted genetic predisposition for type 2 diabetes and birthweight. Conclusion/interpretation: Despite younger age at diagnosis, and fewer individuals with obesity and family history of type 2 diabetes, a birthweight <3000 g was associated with more comorbidities, including a higher systolic BP, as well as with greater use of glucose-lowering and antihypertensive medications, in individuals with recently diagnosed type 2 diabetes.
  •  
27.
  • Hjort, Line, et al. (författare)
  • 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner
  • 2017
  • Ingår i: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Subjects born with low birth weight (LBW) display a more energy-conserving response to fasting compared with normal birth weight (NBW) subjects. However, the molecular mechanisms explaining these metabolic differences remain unknown. Environmental influences may dynamically affect epigenetic marks, also in postnatal life. Here, we aimed to study the effects of short-term fasting on leptin (LEP) and adiponectin (ADIPOQ) DNA methylation and gene expression in subcutaneous adipose tissue (SAT) from subjects with LBW and NBW. Methods: Twenty-one young LBW men and 18 matched NBW controls were studied during 36 h fasting. Eight subjects from each group completed a control study (overnight fast). We analyzed SAT LEP and ADIPOQ methylation (Epityper MassARRAY), gene expression (q-PCR), and adipokine plasma levels. Results: After overnight fast (control study), LEP and ADIPOQ DNA methylation levels were higher in LBW compared to those in NBW subjects (p ≤ 0.03) and increased with 36 h fasting in NBW subjects only (p ≤ 0.06). Both LEP and ADIPOQ methylation levels were positively associated with total body fat percentage (p ≤ 0.05). Plasma leptin levels were higher in LBW versus NBW subjects after overnight fasting (p = 0.04) and decreased more than threefold in both groups after 36 h fasting (p ≤ 0.0001). Conclusions: This is the first study to demonstrate that fasting induces changes in DNA methylation. This was shown in LEP and ADIPOQ promoters in SAT among NBW but not LBW subjects. The altered epigenetic flexibility in LBW subjects might contribute to their differential response to fasting, adipokine levels, and increased risk of metabolic disease.
  •  
28.
  • Huang, Xudong, et al. (författare)
  • Impaired cathepsin L gene expression in skeletal muscle is associated with type 2 diabetes.
  • 2003
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 52:9, s. 2411-2418
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify abnormally expressed genes associated with muscle insulin resistance or type 2 diabetes, we screened the mRNA populations using cDNA differential display combined with relative RT-PCR analysis from muscle biopsies of diabetes-prone C57BL/6J and diabetes-resistant NMRI mice fed with a high-fat or normal diet for 3 or 15 months. Six abnormally expressed genes were isolated from the mice after a 3-month fat feeding; one of them was cathepsin L. No significant difference in mRNA levels of these genes was observed between fat- and normal-diet conditions in either strains. However, cathepsin L mRNA levels in muscle were higher in normal diet–fed C57BL/6J mice compared with normal diet–fed NMRI mice at 3 months (0.72 ± 0.04 vs. 0.51 ± 0.04 relative units, P &lt; 0.01, n = 8–10) and at 15 months (0.41 ± 0.05 vs. 0.27 ± 0.04 relative units, P = 0.01, n = 9–10). Further, cathepsin L mRNA levels in muscle correlated inversely with plasma glucose in both strains regardless of diets at 3 (r = −0.49, P &lt; 0.01, n = 31) and 15 (r = −0.42, P = 0.007, n = 39) months. To study whether cathepsin L plays a role in human diabetes, we measured cathepsin L mRNA levels in muscle biopsies taken before and after an insulin clamp from 12 monozygotic twin pairs discordant for type 2 diabetes and from 12 control subjects. Basal cathepsin L mRNA levels were not significantly different between the study groups. Insulin infusion increased cathepsin L mRNA levels in control subjects from 1.03 ± 0.30 to 1.90 ± 0.32 relative units (P = 0.03). Postclamp cathepsin L mRNA levels were lower in diabetic twins but similar in nondiabetic twins compared with control subjects (0.66 ± 0.22, 1.16 ± 0.18 vs. 1.38 ± 0.21 relative units, P &lt; 0.02, NS, respectively). Further, postclamp cathepsin L mRNA levels were correlated with insulin-mediated glucose uptake (r = 0.37, P = 0.03), particularly, with glucose oxidation (r = 0.37, P = 0.03), and fasting glucose concentrations (r = −0.45, P &lt; 0.01) across all three study groups. In conclusion, muscle cathepsin L gene expression is increased in diabetes-prone mice and related to glucose tolerance. In humans, insulin-stimulated cathepsin L expression in skeletal muscle is impaired in diabetic but not in nondiabetic monozygotic twins, suggesting that the changes may be secondary to impaired glucose metabolism.
  •  
29.
  • Kristensen, Peter L., et al. (författare)
  • Impact of the tcf7l2 genotype on risk of hypoglycaemia and glucagon secretion during hypoglycaemia
  • 2016
  • Ingår i: Endocrine Connections. - 2049-3614. ; 5:6, s. 53-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: In healthy carriers of the T allele of the transcription factor 7-like 2 (TCF7L2), fasting plasma glucagon concentrations are lower compared with those with the C allele. We hypothesised that presence of the T allele is associated with a diminished glucagon response during hypoglycaemia and a higher frequency of severe hypoglycaemia (SH) in type 1 diabetes (T1DM). Material and methods: This is a post hoc study of an earlier prospective observational study of SH and four mechanistic studies of physiological responses to hypoglycaemia. 269 patients with T1DM were followed in a one-year observational study. A log-linear negative binomial model was applied with events of SH as dependent variable and TCF7L2 alleles as explanatory variable. In four experimental studies including 65 people, TCF7L2 genotyping was done and plasma glucagon concentration during experimental hypoglycaemia was determined. Results: Incidences of SH were TT 0.54, TC 0.98 and CC 1.01 episodes per patient-year with no significant difference between groups. During experimental hypoglycaemia, the TCF7L2 polymorphism did not influence glucagon secretion. Discussion: Patients with T1DM carrying the T allele of the TCF7L2 polymorphism do not exhibit diminished glucagon response during hypoglycaemia and are not at increased risk of severe hypoglycaemia compared with carriers of the C allele.
  •  
30.
  • Larsen, Claus M., et al. (författare)
  • Interleukin-1-receptor antagonist in type 2 diabetes mellitus
  • 2007
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 356:15, s. 1517-1526
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The expression of interleukin-1-receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1(beta) in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell proliferation, and apoptosis. Methods: In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1-receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive placebo. At baseline and at 13 weeks, all patients underwent an oral glucose-tolerance test, followed by an intravenous bolus of 0.3 g of glucose per kilogram of body weight, 0.5 mg of glucagon, and 5 g of arginine. In addition, 35 patients underwent a hyperinsulinemic-euglycemic clamp study. The primary end point was a change in the level of glycated hemoglobin, and secondary end points were changes in beta-cell function, insulin sensitivity, and inflammatory markers. Results: At 13 weeks, in the anakinra group, the glycated hemoglobin level was 0.46 percentage point lower than in the placebo group (P=0.03); C-peptide secretion was enhanced (P=0.05), and there were reductions in the ratio of proinsulin to insulin (P=0.005) and in levels of interleukin-6 (P<0.001) and C-reactive protein (P=0.002). Insulin resistance, insulin-regulated gene expression in skeletal muscle, serum adipokine levels, and the body-mass index were similar in the two study groups. Symptomatic hypoglycemia was not observed, and there were no apparent drug-related serious adverse events. Conclusions: The blockade of interleukin-1 with anakinra improved glycemia and beta-cell secretory function and reduced markers of systemic inflammation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 48

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy