SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vallenari A.) "

Sökning: WFRF:(Vallenari A.)

  • Resultat 71-80 av 101
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
71.
  • Bragaglia, A., et al. (författare)
  • The Gaia-ESO Survey : Target selection of open cluster stars & x22c6
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Survey (GES) is a public, high-resolution spectroscopic survey, conducted with the multi-object spectrograph Fibre Large Array Multi Element Spectrograph (FLAMES) on the Very Large Telescope (European Southern Observatory, ESO, Cerro Paranal, Chile) from December 2011 to January 2018. Gaia-ESO has targeted all the main stellar components of the Milky Way, including thin and thick disc, bulge, and halo. In particular, a large sample of open clusters has been observed, from very young ones, just out of the embedded phase, to very old ones. Aims. The different kinds of clusters and stars targeted in them are useful to reach the main science goals of the open cluster part of GES, which are the study of the open cluster structure and dynamics, the use of open clusters to constrain and improve stellar evolution models, and the definition of Galactic disc properties (e.g., metallicity distribution). Methods. The Gaia-ESO Survey is organised in 19 working groups (WGs), each one being responsible for a task. We describe here the work of three of them, one in charge of the selection of the targets within each cluster or association (WG4), one responsible for defining the most probable candidate member stars (WG1), and another one in charge of the preparation of the observations (WG6). As the entire GES has been conducted before the second Gaia data release, we could not make use of the Gaia astrometry to define cluster member candidates. We made use of public and private photometry to select the stars to be observed with FLAMES, once brought on a common astrometric system (the one defined by 2MASS). Candidate target selection was based on ground-based proper motions, radial velocities, and X-ray properties when appropriate, for example, and it was mostly used to define the position of the clusters' evolutionary sequences in the colour-magnitude diagrams. Targets for GIRAFFE were then selected near the sequences in an unbiased way. We used known information on membership, when available, only for the few stars to be observed with UVES. Results. We collected spectra for 62 confirmed clusters in the main observing campaign (and a few more clusters were taken from the ESO archive). Among them are very young clusters, where the main targets are pre-main sequence stars, clusters with very hot and massive stars currently on the main sequence, intermediate-age and old clusters where evolved stars are the main targets. Our strategy of making the selection of targets as inclusive and unbiased as possible and of observing a significant and representative fraction of all possible targets permitted us to collect the largest, most accurate, and most homogeneous spectroscopic data set on open star clusters ever achieved.
  •  
72.
  • Gilmore, G., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey
  • 2012
  • Ingår i: The Messenger. - 0254-4423. ; 147, s. 25-31
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. The motivation, organisation and implementation of the Gaia-ESO Survey are described, emphasising the complementarity with the ESA Gaia mission. Spectra from the very first observing run of the survey are presented.
  •  
73.
  • Spina, L., et al. (författare)
  • The Gaia-ESO Survey: Metallicity of the Chamaeleon I star-forming region
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 568
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star forming region. based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. The 48 candidate members of Chamaeleon I have been observed with the high-resolution, spectrograph UVES. We use the surface gravity, lithium line equivalent width, and position in the Hertzsprimg-Russell diagram to confirm the cluster members, and we use the iron abundance to derive the mean metallicity of the region. Results. Out of the 48 targets. we confirm 15 high probability members. Considering the metallicity measurements for nine of them. we find that the iron abundance of Chamaeleon I is slightly subsolar with a mean value [Fe/H] = -0.08 +/- 0.04 dex, This result agrees with the metallicity determination of other nearby star-forming regions and suggests that the chemical pattern of the youngest stars in the solar neighborhood is indeed more metal-poor than the Sun. We argue that this evidence may be related to the chemical distribution of the Gould Belt that contains most of the nearby star-forming regions and young clusters.
  •  
74.
  • Brown, A. G.A., et al. (författare)
  • Summary of the contents and survey properties
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims. A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods. The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results. Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions. Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.
  •  
75.
  • Donati, P., et al. (författare)
  • The Gaia-ESO Survey : Reevaluation of the parameters of the open cluster Trumpler 20 using photometry and spectroscopy
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 561, s. A94-
  • Tidskriftsartikel (refereegranskat)abstract
    • Trumpler 20 is an old open cluster (OC) located toward the Galactic centre, at about 3 kpc from the Sun and similar to 7 kpc from the Galactic centre. Its position makes this cluster particularly interesting in the framework of the chemical properties of the Galactic disc because very few old OCs reside in the inner part of the disc. For this reason it has been selected as a cluster target of the Gaia-ESO Survey, and spectra of many stars in the main-sequence and red-clump phases are now available. Moreover, although it has been studied by several authors in the past, no consensus on the evolutionary status of Tr 20 has been reached. The heavy contamination of field stars (the line of sight of Tr 20 crosses the Carina spiral arm) complicates a correct interpretation. Another interesting aspect of the cluster is that it shows a broadened main-sequence turn-off and a prominent and extended red-clump, characteristics that are not easily explained by classical evolutionary models. Exploiting both spectroscopic information from the Gaia-ESO Survey (and the ESO archive) and literature photometry, we obtain a detailed and accurate analysis of the properties of the cluster. We make use of the first accurate metallicity measurement ever obtained from several spectra of red clump stars, and of cluster membership determination using radial velocities. According to the evolutionary models adopted, we find that Tr 20 has an age in the range 1.35-1.66 Gyr, an average reddening E(B - V) in the range 0.31-0.35 mag, and a distance modulus (m - M)(0) between 12.64 and 12.72 mag. The spectroscopic metallicity is [Fe/H] = +0.17 dex. We discuss the structural properties of the object and constrain possible hypotheses for its broadened upper main sequence by estimating the effect of differential reddening and its extended red clump.
  •  
76.
  • Howes, Louise, et al. (författare)
  • The Gaia-ESO Survey: the most metal-poor stars in the Galactic bulge
  • 2014
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 445:4, s. 4241-4246
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results of the EMBLA survey (Extremely Metal-poor BuLge stars with AAOmega), aimed at finding metal-poor stars in the Milky Way bulge, where the oldest stars should now preferentially reside. EMBLA utilizes SkyMapper photometry to pre-select metal-poor candidates, which are subsequently confirmed using AAOmega spectroscopy. We describe the discovery and analysis of four bulge giants with -2.72 <= [Fe/H] <= -2.48, the lowest metallicity bulge stars studied with high-resolution spectroscopy to date. Using FLAMES/UVES spectra through the Gaia-ESO Survey we have derived abundances of twelve elements. Given the uncertainties, we find a chemical similarity between these bulge stars and halo stars of the same metallicity, although the abundance scatter may be larger, with some of the stars showing unusual [alpha/Fe] ratios.
  •  
77.
  • Jacobson, H. R., et al. (författare)
  • The Gaia-ESO Survey : Probes of the inner disk abundance gradient
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nature of the metallicity gradient inside the solar circle (R-GC < 8 kpc) is poorly understood, but studies of Cepheids and a small sample of open clusters suggest that it steepens in the inner disk. Aims. We investigate the metallicity gradient of the inner disk using a sample of inner disk open clusters that is three times larger than has previously been studied in the literature to better characterize the gradient in this part of the disk. Methods. We used the Gaia-ESO Survey (GES) [Fe/H] values and stellar parameters for stars in 12 open clusters in the inner disk from GES-UVES data. Cluster mean [Fe/H] values were determined based on a membership analysis for each cluster. Where necessary, distances and ages to clusters were determined via comparison to theoretical isochrones. Results. The GES open clusters exhibit a radial metallicity gradient of -0.10 +/- 0.02 dex kpc(-1), consistent with the gradient measured by other literature studies of field red giant stars and open clusters in the range R-GC similar to 6-12 kpc. We also measure a trend of increasing [Fe/H] with increasing cluster age, as has also been found in the literature. Conclusions. We find no evidence for a steepening of the inner disk metallicity gradient inside the solar circle as earlier studies indicated. The age-metallicity relation shown by the clusters is consistent with that predicted by chemical evolution models that include the effects of radial migration, but a more detailed comparison between cluster observations and models would be premature.
  •  
78.
  • Magrini, L., et al. (författare)
  • The Gaia-ESO Survey: Insights into the inner-disc evolution from open clusters
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 580
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The inner disc, which links the thin disc with the bulge, has been somewhat neglected in the past because of the intrinsic difficulties in its study, among which crowding and high extinction. Open clusters located in the inner disc are among the best tracers of its chemistry at different ages and distances. Aims. We analyse the chemical patterns of four open clusters located within 7 kpc of the Galactic centre and of field stars to infer the properties of the inner disc with the Gaia-ESO survey idr2/3 data release. Methods. We derive the parameters of the newly observed cluster, Berkeley 81, finding an age of about 1 Gyr and a Galactocentric distance of similar to 5.4 kpc. We construct the chemical patterns of clusters and we compare them with those of field stars in the solar neighbourhood and in the inner-disc samples. Results. Comparing the three populations we observe that inner-disc clusters and field stars are both, on average, enhanced in [O/Fe], [Mg/Fe], and [Si/Fe]. Using the idr2/3 results of M67, we estimate the non-local thermodynamic equilibrium (NLTE) effect on the abundances of Mg and Si in giant stars. After empirically correcting for NLTE effects, we note that NGC 6705 and Be 81 still have a high [alpha/Fe]. Conclusions. The location of the four open clusters and of the field population reveals that the evolution of the metallicity [Fe/H] and of [alpha/Fe] can be explained within the framework of a simple chemical evolution model: both [Fe/H] and [alpha/Fe] of Trumpler 20 and of NGC 4815 are in agreement with expectations from a simple chemical evolution model. On the other hand, NGC 6705, and to a lesser degree Berkeley 81, have higher [alpha/Fe] than expected for their ages, location in the disc, and metallicity. These differences might originate from local enrichment processes as explained in the inhomogeneous evolution framework.
  •  
79.
  • Mikolaitis, S., et al. (författare)
  • The Gaia-ESO Survey: the chemical structure of the Galactic discs from the first internal data release
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 572
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Until recently, most high-resolution spectroscopic studies of the Galactic thin and thick discs were mostly confined to objects in the solar vicinity. Here we aim at enlarging the volume in which individual chemical abundances are used to characterise the thin and thick discs, using the first internal data release of the Gaia-ESO survey (GES iDR1). Methods. We used the spectra of around 2000 FGK dwarfs and giants from the GES iDR1, obtained at resolutions of up to R similar to 20 000 with the FLAMES/GIRAFFE spectrograph. We derive and discuss the abundances of eight elements (Mg, Al, Si, Ca, Ti, Fe, Cr, Ni, and Y). Results. We show that the trends of these elemental abundances with iron are very similar to those in the solar neighbourhood. We find a natural division between alpha-rich and alpha-poor stars, best seen in the bimodality of the [Mg/M] distributions in bins of metallicity, which we attribute to thick-and thin-disc sequences, respectively. This separation is visible for most alpha-elements and for aluminium. With the possible exception of Al, the observed dispersion around the trends is well described by the expected errors, leaving little room for astrophysical dispersion. Using previously derived distances from the first paper from this series for our sample, we further find that the thick-disc is more extended vertically and is more centrally concentrated towards the inner Galaxy than the thin-disc, which indicates a shorter scale-length. We derive the radial (4 to 12 kpc) and vertical (0 to 3.5 kpc) gradients in metallicity, iron, four alpha-element abundances, and aluminium for the two populations, taking into account the identified correlation between R-GC and vertical bar Z vertical bar. Similarly to other works, a radial metallicity gradient is found in the thin disc. The positive radial individual [alpha/M] gradients found are at variance from the gradients observed in the RAVE survey. The thin disc also hosts a negative vertical metallicity gradient in the solar cylinder, accompanied by positive individual [alpha/M] and [Al/M] gradients. The thick-disc, on the other hand, presents no radial metallicity gradient, a shallower vertical metallicity gradient than the thin-disc, an alpha-elements-to-iron radial gradient in the opposite sense than that of the thin disc, and positive vertical individual [alpha/M] and [Al/M] gradients. We examine several thick-disc formation scenarii in the light of these radial and vertical trends.
  •  
80.
  • Ruchti, Gregory, et al. (författare)
  • The Gaia-ESO Survey: a quiescent Milky Way with no significant dark/stellar accreted disc
  • 2015
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 450:3, s. 2874-2887
  • Tidskriftsartikel (refereegranskat)abstract
    • According to our current cosmological model, galaxies like the Milky Way are expected to experience many mergers over their lifetimes. The most massive of the merging galaxies will be dragged towards the disc plane, depositing stars and dark matter into an accreted disc structure. In this work, we utilize the chemodynamical template developed in Ruchti et al. to hunt for accreted stars. We apply the template to a sample of 4675 stars in the third internal data release from the Gaia-ESO Spectroscopic Survey. We find a significant component of accreted halo stars, but find no evidence of an accreted disc component. This suggests that the Milky Way has had a rather quiescent merger history since its disc formed some 8-10 billion years ago and therefore possesses no significant dark matter disc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 71-80 av 101

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy