SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Verburg Piet) "

Sökning: WFRF:(Verburg Piet)

  • Resultat 11-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • O’Reilly, Catherine M., et al. (författare)
  • Rapid and highly variable warming of lake surface waters around the globe
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:24
  • Tidskriftsartikel (refereegranskat)abstract
    • In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.
  •  
12.
  • Pilla, Rachel M., et al. (författare)
  • Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.
  •  
13.
  • Pilla, Rachel M., et al. (författare)
  • Global data set of long-term summertime vertical temperature profiles in 153 lakes
  • 2021
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.
  •  
14.
  • Sharma, Sapna, et al. (författare)
  • A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009
  • 2015
  • Ingår i: Scientific Data. - : Macmillan Publishers Limited. - 2052-4463. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.
  •  
15.
  • Stockwell, Jason D., et al. (författare)
  • Storm impacts on phytoplankton community dynamics in lakes
  • 2020
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 26:5, s. 2756-2784
  • Forskningsöversikt (refereegranskat)abstract
    • In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
  •  
16.
  • Weyhenmeyer, Gesa A., et al. (författare)
  • Widespread diminishing anthropogenic effects on calcium in freshwaters
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium (Ca) is an essential element for almost all living organisms. Here, we examined global variation and controls of freshwater Ca concentrations, using 440 599 water samples from 43 184 inland water sites in 57 countries. We found that the global median Ca concentration was 4.0 mg L-1 with 20.7% of the water samples showing Ca concentrations <= 1.5 mg L-1, a threshold considered critical for the survival of many Ca-demanding organisms. Spatially, freshwater Ca concentrations were strongly and proportionally linked to carbonate alkalinity, with the highest Ca and carbonate alkalinity in waters with a pH around 8.0 and decreasing in concentrations towards lower pH. However, on a temporal scale, by analyzing decadal trends in > 200 water bodies since the 1980s, we observed a frequent decoupling between carbonate alkalinity and Ca concentrations, which we attributed mainly to the influence of anthropogenic acid deposition. As acid deposition has been ameliorated, in many freshwaters carbonate alkalinity concentrations have increased or remained constant, while Ca concentrations have rapidly declined towards or even below pre-industrial conditions as a consequence of recovery from anthropogenic acidification. Thus, a paradoxical outcome of the successful remediation of acid deposition is a globally widespread freshwater Ca concentration decline towards critically low levels for many aquatic organisms.
  •  
17.
  • Woolway, R. Iestyn, et al. (författare)
  • Geographic and temporal variations in turbulent heat loss from lakes : A global analysis across 45 lakes
  • 2018
  • Ingår i: Limnology and Oceanography. - : WILEY. - 0024-3590 .- 1939-5590. ; 63:6, s. 2436-2449
  • Tidskriftsartikel (refereegranskat)abstract
    • Heat fluxes at the lake surface play an integral part in determining the energy budget and thermal structure in lakes, including regulating how lakes respond to climate change. We explore patterns in turbulent heat fluxes, which vary across temporal and spatial scales, using in situ high-frequency monitoring data from 45 globally distributed lakes. Our analysis demonstrates that some of the lakes studied follow a marked seasonal cycle in their turbulent surface fluxes and that turbulent heat loss is highest in larger lakes and those situated at low latitude. The Bowen ratio, which is the ratio of mean sensible to mean latent heat fluxes, is smaller at low latitudes and, in turn, the relative contribution of evaporative to total turbulent heat loss increases toward the tropics. Latent heat transfer ranged from similar to 60% to > 90% of total turbulent heat loss in the examined lakes. The Bowen ratio ranged from 0.04 to 0.69 and correlated significantly with latitude. The relative contributions to total turbulent heat loss therefore differ among lakes, and these contributions are influenced greatly by lake location. Our findings have implications for understanding the role of lakes in the climate system, effects on the lake water balance, and temperature-dependent processes in lakes.
  •  
18.
  • Woolway, R. Iestyn, et al. (författare)
  • Latitude and lake size are important predictors of over-lake atmospheric stability
  • 2017
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 44:17, s. 8875-8883
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulent fluxes across the air-water interface are integral to determining lake heat budgets, evaporation, and carbon emissions from lakes. The stability of the atmospheric boundary layer (ABL) influences the exchange of turbulent energy. We explore the differences in over-lake ABL stability using data from 39 globally distributed lakes. The frequency of unstable ABL conditions varied between lakes from 71 to 100% of the time, with average air temperatures typically several degrees below the average lake surface temperature. This difference increased with decreasing latitude, resulting in a more frequently unstable ABL and a more efficient energy transfer to and from the atmosphere, toward the tropics. In addition, during summer the frequency of unstable ABL conditions decreased with increasing lake surface area. The dependency of ABL stability on latitude and lake size has implications for heat loss and carbon fluxes from lakes, the hydrologic cycle, and climate change effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy