SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vihinen M) "

Sökning: WFRF:(Vihinen M)

  • Resultat 21-30 av 60
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  •  
22.
  •  
23.
  • Knapp, S, et al. (författare)
  • Thermal unfolding of small proteins with SH3 domain folding pattern
  • 1998
  • Ingår i: Proteins. - 0887-3585 .- 1097-0134. ; 31:3, s. 309-319
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermal unfolding of three SH3 domains of the Tec family of tyrosine kinases was studied by differential scanning calorimetry and CD spectroscopy, The unfolding transition of the three protein domains in the acidic pH region can be described as a reversible two-state process. For all three SH3 domains maximum stability was observed in the pH region 4.5 < pH < 7.0 where these domains unfold at temperatures of 353K (Btk), 342K (Itk), and 344K (Tec), At these temperatures an enthalpy change of 196 kJ/mol, 178 kJ/mol, and 169 kJ/mol was measured for Btk-, Itk-, and Tec-SH3 domains, respectively. The determined changes in heat capacity between the native and the denatured state are in an usual range expected for small proteins. Our analysis revealed that all SH3 domains studied are only weakly stabilized and have free energies of unfolding which do not exceed 12-16 kJ/mol but show quite high melting temperatures. Comparing unfolding free energies measured for eukaryotic SH3 domains with those of the topologically identical Sso7d protein from the hyperthermophile Sulfolobus solfataricus, the increased melting temperature of the thermostable protein is due to a broadening as well as a significant lifting of its stability curve. However, at their physiological temperatures, 310K for mesophilic SH3 domains and 350K for Sso7d, eukaryotic SH3 domains and Sso7d show very similar stabilities. (C) 1998 Wiley-Liss, Inc.
  •  
24.
  • Kuusisto, Kirsi M., et al. (författare)
  • Copy Number Variation Analysis in Familial BRCA1/2-Negative Finnish Breast and Ovarian Cancer
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Inherited factors predisposing individuals to breast and ovarian cancer are largely unidentified in a majority of families with hereditary breast and ovarian cancer (HBOC). We aimed to identify germline copy number variations (CNVs) contributing to HBOC susceptibility in the Finnish population. Methods: A cohort of 84 HBOC individuals (negative for BRCA1/2-founder mutations and pre-screened for the most common breast cancer genes) and 36 healthy controls were analysed with a genome-wide SNP array. CNV-affecting genes were further studied by Gene Ontology term enrichment, pathway analyses, and database searches to reveal genes with potential for breast and ovarian cancer predisposition. CNVs that were considered to be important were validated and genotyped in 20 additional HBOC individuals (6 CNVs) and in additional healthy controls (5 CNVs) by qPCR. Results: An intronic deletion in the EPHA3 receptor tyrosine kinase was enriched in HBOC individuals (12 of 101, 11.9%) compared with controls (27 of 432, 6.3%) (OR = 1.96; P = 0.055). EPHA3 was identified in several enriched molecular functions including receptor activity. Both a novel intronic deletion in the CSMD1 tumor suppressor gene and a homozygous intergenic deletion at 5q15 were identified in 1 of 101 (1.0%) HBOC individuals but were very rare (1 of 436, 0.2% and 1 of 899, 0.1%, respectively) in healthy controls suggesting that these variants confer disease susceptibility. Conclusion: This study reveals new information regarding the germline CNVs that likely contribute to HBOC susceptibility in Finland. This information may be used to facilitate the genetic counselling of HBOC individuals but the preliminary results warrant additional studies of a larger study group.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • Mantyla, E., et al. (författare)
  • Cytoplasmic Parvovirus Capsids Recruit Importin Beta for Nuclear Delivery
  • 2020
  • Ingår i: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 94:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Parvoviruses are an important platform for gene and cancer therapy. Their cell entry and the following steps, including nuclear import, are inefficient, limiting their use in therapeutic applications. Two models exist on parvoviral nuclear entry: the classical import of the viral capsid using nuclear transport receptors of the importin (karyopherin) family or the direct attachment of the capsid to the nuclear pore complex leading to the local disintegration of the nuclear envelope. Here, by laser scanning confocal microscopy and in situ proximity ligation analyses combined with coimmunoprecipitation, we show that infection requires importin beta-mediated access to the nuclear pore complex and nucleoporin 153-mediated interactions on the nuclear side. The importin beta-capsid interaction continued within the nucleoplasm, which suggests a mixed model of nuclear entry in which the classical nuclear import across the nuclear pore complex is accompanied by transient ruptures of the nuclear envelope, also allowing the passive entry of importin beta-capsid complexes into the nucleus. IMPORTANCE Parvoviruses are small DNA viruses that deliver their DNA into the postmitotic nuclei, which is an important step for parvoviral gene and cancer therapies. Limitations in virus-receptor interactions or endocytic entry do not fully explain the low transduction/infection efficiency, indicating a bottleneck after virus entry into the cytoplasm. We thus investigated the transfer of parvovirus capsids from the cytoplasm to the nucleus, showing that the nuclear import of the parvovirus capsid follows a unique strategy, which differs from classical nuclear import and those of other viruses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 60

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy