SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wåhlin Anders) "

Sökning: WFRF:(Wåhlin Anders)

  • Resultat 51-60 av 136
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Sundström, Peter, et al. (författare)
  • Venous and cerebrospinal fluid flow in multiple sclerosis. A case-control study.
  • 2010
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 68:2, s. 255-259
  • Tidskriftsartikel (refereegranskat)abstract
    • The prevailing view on multiple sclerosis etiopathogenesis has been challenged by the suggested new entity chronic cerebrospinal venous insufficiency. To test this hypothesis, we studied 21 relapsing-remitting multiple sclerosis cases and 20 healthy controls with phase-contrast magnetic resonance imaging. In addition, in multiple sclerosis cases we performed contrast-enhanced magnetic resonance angiography. We found no differences regarding internal jugular venous outflow, aqueductal cerebrospinal fluid flow, or the presence of internal jugular blood reflux. Three of 21 cases had internal jugular vein stenoses. In conclusion, we found no evidence confirming the suggested vascular multiple sclerosis hypothesis.
  •  
52.
  • van Osch, Matthias J. P., et al. (författare)
  • Human brain clearance imaging : pathways taken by magnetic resonance imaging contrast agents after administration in cerebrospinal fluid and blood
  • 2024
  • Ingår i: NMR in Biomedicine. - : John Wiley & Sons. - 0952-3480 .- 1099-1492. ; 37:9
  • Forskningsöversikt (refereegranskat)abstract
    • Over the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days. With both intrathecal and intravenous injections being used, which each have their own specific routes of distribution and thus clearance of contrast agent, a clear understanding of the kinetics associated with both approaches, and especially the differences between them, is needed to properly interpret the results. Because it is known that intrathecally injected contrast agent reaches the blood, albeit in small concentrations, and that similarly some of the intravenously injected agent can be detected in CSF, both pathways are connected and will, in theory, reach the same compartments. However, because of clear differences in relative enhancement patterns, both injection approaches will result in varying sensitivities for assessment of different subparts of the brain clearance system. In this opinion review article, the "EU Joint Programme – Neurodegenerative Disease Research (JPND)" consortium on human brain clearance imaging provides an overview of contrast agent pharmacokinetics in vivo following intrathecal and intravenous injections and what typical concentrations and concentration–time curves should be expected. This can be the basis for optimizing and interpreting contrast-enhanced MRI for brain clearance imaging. Furthermore, this can shed light on how molecules may exchange between blood, brain, and CSF.
  •  
53.
  • Vikner, Tomas, 1990- (författare)
  • Cerebral arterial pulsatility imaging using 4D flow MRI : methodological development and applications in brain aging
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • 4D flow magnetic resonance imaging (MRI) is increasingly recognizedas a versatile tool to assess arterial and venous hemodynamics. Cerebral arterial pulsatility is typically assessed by analyzing flow waveforms over the cardiac cycle, where flow amplitude is a function of cardiac output, central arterial stiffness, and cerebrovascular resistance and compliance. Excessive pulsatility may propagate to the cerebral microcirculation, and constitute a harmful mechanism for the brain. Indeed, imaging studies have linked arterial pulsatility to hippocampus volume, cerebral small vessel disease (SVD), and Alzheimer’s disease (AD). In animal models, elevated pulsatility leads to blood-brain barrier (BBB) leakage, capillary loss, and cognitive decline. However, associations to cerebrovascular lesions and brain function in the spectrum of normal aging are less investigated. Further, previous 4D flow studies have mainly assessed pulsatility in relatively large cerebral arteries. When exploring links to microvascular damage and brain function, more distal measurements, closer to the microcirculation, are desired. This thesis aimed to develop 4D flow MRI post-processing methods to obtain pulsatile waveforms in small, distal cerebral arteries with noisy velocity data and a complex vascular anatomy, and to evaluate pulsatility (primarily assessed by the pulsatility index) in relation to aging, brain function, and other imaging biomarkers of cerebrovascular damage, with particular dedication towards the hippocampus and cerebral SVD. To assess pulsatility in distal cerebral arteries, a post-processing method that automatically samples waveforms from numerous small arteries, to obtain a whole-brain representation of the distal arterial waveform, was developed (Paper I). We demonstrated the importance of averaging flow waveforms along multiple vessel segments to avoid overestimations in the pulsatility index, showed agreement with reference methods, and linked distal arterial pulsatility to age. To explore links to hippocampal function, we evaluated pulsatility in relation to cognition, hemodynamic low-frequency oscillations (LFOs), perfusion, and hippocampus volume (Paper II). We found that higher pulsatility was linked to worse hippocampus-sensitive episodic memory, weaker hippocampal LFOs, and lower whole-brain perfusion. These findings aligned with models suggesting that hippocampal microvessels could be particularly susceptible to pulsatile stress.To inform on SVD pathophysiology, we evaluated 5-year associations among pulsatility, white matter lesions (WMLs) and perivascular space (PVS) dilation, using mixed models, factor analysis, and change score models (Paper III). Lead-lag analyses indicated that, while pulsatility at baseline could not predict WML nor PVS progression, WML and PVS volumes at baseline predicted 5-year pulsatility-increases. These findings indicate that individuals with a higher load of cerebrovascular damage are more prone to see increased pulsatility over time, and suggest that high pulsatility is a manifestation, rather a risk factor, for cerebral SVD.   To shed light on the potential role of BBB leakage in aging and SVD, we used dynamic contrast enhanced (DCE) MRI and intravenous gadolinium injections to quantify BBB permeability (Paper IV). We found stepwise increases in permeability from healthy white matter to WMLs, supporting that BBB leakages are implicated in SVD. However, hippocampal BBB permeability was unrelated to age, indicating that this capillary property is maintained in aging. Finally, arterial pulsatility was unrelated to BBB permeability in WMLs and in the hippocampus, providing no evidence of excessive pulsatility as a trigger of BBB leakage. In conclusion, distal arterial pulsatility measurements are reliable when averaging 4D flow waveforms over a large number of vessels. Pulsatility increases with age, and individuals with more cerebrovascular lesions are prone to see larger increases over time. Pulsatility is negatively related to perfusion and hippocampal function. However, the temporal dynamics among the SVD biomarkers, and the absence of pulsatility–permeability associations, challenge the concept of excessive pulsatility as a trigger of microvascular damage. Future studies are needed to understand whether altered cerebral hemodynamics play a causal role in cognitive decline and dementia. Meanwhile, 4D flow hemodynamic parameters could be useful as biomarkers related to vessel properties and cerebrovascular health. 
  •  
54.
  • Vikner, Tomas, et al. (författare)
  • Cerebral arterial pulsatility is linked to hippocampal microvascular function and episodic memory in healthy older adults
  • 2021
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016. ; 41:7, s. 1778-1790
  • Tidskriftsartikel (refereegranskat)abstract
    • Microvascular damage in the hippocampus is emerging as a central cause of cognitive decline and dementia in aging. This could be a consequence of age-related decreases in vascular elasticity, exposing hippocampal capillaries to excessive cardiac-related pulsatile flow that disrupts the blood-brain barrier and the neurovascular unit. Previous studies have found altered intracranial hemodynamics in cognitive impairment and dementia, as well as negative associations between pulsatility and hippocampal volume. However, evidence linking features of the cerebral arterial flow waveform to hippocampal function is lacking. We used a high-resolution 4D flow MRI approach to estimate global representations of the time-resolved flow waveform in distal cortical arteries and in proximal arteries feeding the brain in healthy older adults. Waveform-based clustering revealed a group of individuals featuring steep systolic onset and high amplitude that had poorer hippocampus-sensitive episodic memory (p = 0.003), lower whole-brain perfusion (p = 0.001), and weaker microvascular low-frequency oscillations in the hippocampus (p = 0.035) and parahippocampal gyrus (p = 0.005), potentially indicating compromised neurovascular unit integrity. Our findings suggest that aberrant hemodynamic forces contribute to cerebral microvascular and hippocampal dysfunction in aging.
  •  
55.
  • Vikner, Tomas, et al. (författare)
  • Characterizing pulsatility in distal cerebral arteries using 4D flow MRI
  • 2020
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016. ; 40:12, s. 2429-2440
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent reports have suggested that age-related arterial stiffening and excessive cerebral arterial pulsatility cause blood-brain barrier breakdown, brain atrophy and cognitive decline. This has spurred interest in developing non-invasive methods to measure pulsatility in distal vessels, closer to the cerebral microcirculation. Here, we report a method based on four-dimensional (4D) flow MRI to estimate a global composite flow waveform of distal cerebral arteries. The method is based on finding and sampling arterial waveforms from thousands of cross sections in numerous small vessels of the brain, originating from cerebral cortical arteries. We demonstrate agreement with internal and external reference methods and show the ability to capture significant increases in distal cerebral arterial pulsatility as a function of age. The proposed approach can be used to advance our understanding regarding excessive arterial pulsatility as a potential trigger of cognitive decline and dementia.
  •  
56.
  • Vikström, Axel, et al. (författare)
  • Establishing the distribution of cerebrovascular resistance using computational fluid dynamics and 4D flow MRI
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrovascular resistance (CVR) regulates blood flow in the brain, but little is known about the vascular resistances of the individual cerebral territories. We present a method to calculate these resistances and investigate how CVR varies in the hemodynamically disturbed brain. We included 48 patients with stroke/TIA (29 with symptomatic carotid stenosis). By combining flow rate (4D flow MRI) and structural computed tomography angiography (CTA) data with computational fluid dynamics (CFD) we computed the perfusion pressures out from the circle of Willis, with which CVR of the MCA, ACA, and PCA territories was estimated. 56 controls were included for comparison of total CVR (tCVR). CVR were 33.8 ± 10.5, 59.0 ± 30.6, and 77.8 ± 21.3 mmHg s/ml for the MCA, ACA, and PCA territories. We found no differences in tCVR between patients, 9.3 ± 1.9 mmHg s/ml, and controls, 9.3 ± 2.0 mmHg s/ml (p = 0.88), nor in territorial CVR in the carotid stenosis patients between ipsilateral and contralateral hemispheres. Territorial resistance associated inversely to territorial brain volume (p < 0.001). These resistances may work as reference values when modelling blood flow in the circle of Willis, and the method can be used when there is need for subject-specific analysis.
  •  
57.
  • Wåhlin, Anders, et al. (författare)
  • 4D flow MRI hemodynamic biomarkers for cerebrovascular diseases
  • 2022
  • Ingår i: Journal of Internal Medicine. - : John Wiley & Sons. - 0954-6820 .- 1365-2796. ; 291:2, s. 115-127
  • Forskningsöversikt (refereegranskat)abstract
    • Alterations in cerebral blood flow are common in several neurological diseases among the elderly including stroke, cerebral small vessel disease, vascular dementia, and Alzheimer's disease. 4D flow magnetic resonance imaging (MRI) is a relatively new technique to investigate cerebrovascular disease, and makes it possible to obtain time-resolved blood flow measurements of the entire cerebral arterial venous vasculature and can be used to derive a repertoire of hemodynamic biomarkers indicative of cerebrovascular health.The information that can be obtained from one single 4D flow MRI scan allows both the investigation of aberrant flow patterns at a focal location in the vasculature as well as estimations of brain-wide disturbances in blood flow. Such focal and global hemodynamic biomarkers show the potential of being sensitive to impending cerebrovascular disease and disease progression and can also become useful during planning and follow-up of interventions aiming to restore a normal cerebral circulation.Here, we describe 4D flow MRI approaches for analyzing the cerebral vasculature. We then survey key hemodynamic biomarkers that can be reliably assessed using the technique. Finally, we highlight cerebrovascular diseases where one or multiple hemodynamic biomarkers are of central interest.
  •  
58.
  • Wåhlin, Anders, et al. (författare)
  • Assessment of craniospinal pressure-volume indices
  • 2010
  • Ingår i: American Journal of Neuroradiology. - 0195-6108 .- 1936-959X. ; 31:9, s. 1645-1650
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: The PVI(CC) of the craniospinal compartment defines the shape of the pressure-volume curve and determines the damping of cyclic arterial pulsations. Despite no reports of direct measurements of the PVI(CC) among healthy elderly, it is believed that a change away from adequate accommodation of cardiac-related pulsations may be a pathophysiologic mechanism seen in neurodegenerative disorders such as Alzheimer disease and idiopathic normal pressure hydrocephalus. In this study, blood and CSF flow measurements are combined with lumbar CSF infusion measurements to assess the craniospinal PVI(CC) and its distribution of cranial and spinal compartments in healthy elderly. MATERIALS AND METHODS: Thirty-seven healthy elderly were included (60-82 years of age). The cyclic arterial volume change and the resulting shift of CSF to the spinal compartment were quantified by PC-MR imaging. In addition, each subject underwent a lumbar CSF infusion test in which the magnitude of cardiac-related pulsations in intracranial pressure was quantified. Finally, the PVI was calculated by using a mathematic model. RESULTS: After excluding 2 extreme values, the craniospinal PVI(CC) was calculated to a mean of 9.8 ± 2.7 mL and the estimated average 95% confidence interval of individual measurements was ± 9%. The average intracranial and spinal contributions to the overall compliance were 65% and 35% respectively (n = 35). CONCLUSIONS: Combining lumbar CSF infusion and PC-MR imaging proved feasible and robust for assessment of the craniospinal PVI(CC). This study produced normative values and showed that the major compensatory contribution was located intracranially.
  •  
59.
  • Wåhlin, Anders, 1983- (författare)
  • Cerebral blood flow and intracranial pulsatility studied with MRI : measurement, physiological and pathophysiological aspects
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects. Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile stress were assessed in healthy elderly. The biomarkers were extracted from invasive CSF pressure measurements as well as 2D PCMRI acquisitions. The volumes of temporal cortex, frontal cortex and hippocampus were negatively related to the magnitude of cardiac-related intracranial pulsatility. Finally, a potentially improved workflow to assess the volume of arterial pulsatility using time resolved, four-dimensional phase contrast MRI measurements (4D PCMRI) was evaluated. The measurements showed good agreement with 2D PCMRI acquisitions. In conclusion, this work showed that 2D PCMRI is a feasible tool to study the pulsatile waveforms of cerebral blood and CSF flow. Conventional views regarding the magnitude and distribution of craniospinal compliance was challenged, with important implications regarding the understanding of how intracranial vascular pulsatility is absorbed. A first counterpoint to previous near-uniform observations of obstructions in the internal jugular veins in multiple sclerosis was provided. It was demonstrated that large cardiac- related intracranial pulsatility were related to smaller volumes of brain regions that are important in neurodegenerative diseases among elderly. This represents a strong rationale to further investigate the role of excessive intracranial pulsatility in cognitive impairment and dementia. For that work, 4D PCMRI will facilitate an effective analysis of cerebral blood flow and pulsatility. 
  •  
60.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 136
Typ av publikation
tidskriftsartikel (98)
konferensbidrag (15)
doktorsavhandling (11)
annan publikation (7)
rapport (2)
forskningsöversikt (2)
visa fler...
bok (1)
visa färre...
Typ av innehåll
refereegranskat (105)
övrigt vetenskapligt/konstnärligt (30)
populärvet., debatt m.m. (1)
Författare/redaktör
Wåhlin, Anders (115)
Malm, Jan (30)
Ambarki, Khalid (27)
Nyberg, Lars, 1966- (27)
Eklund, Anders (25)
Malm, Jan, Professor ... (23)
visa fler...
Salami, Alireza (19)
Birgander, Richard (17)
Bäckman, Lars (16)
Andersson, Micael (15)
Karalija, Nina, 1984 ... (13)
Zarrinkoob, Laleh (11)
Axelsson, Jan, 1966- (9)
Riklund, Katrine, MD ... (9)
Molin, Nils-Erik (8)
Gren, Per (7)
Rieckmann, Anna (7)
Riklund, Katrine (6)
Hallberg, Per (6)
Schedin, Staffan (5)
Qvarlander, Sara (5)
Lindén, Christina (4)
Jóhannesson, Gauti, ... (4)
Lundquist, Anders, 1 ... (4)
Johansson, Elias (4)
Höglund, Martin (3)
Nyberg, Lars (3)
Backman, Lars (3)
Garpebring, Anders (3)
Koskinen, Lars-Owe D (3)
Sjögren, Karl-Göran, ... (3)
Olofsson, Kenneth (3)
Allentoft, Morten E. (3)
Sikora, Martin (3)
Fischer, Anders, 195 ... (3)
Ingason, Andrés (3)
Stenderup, Jesper (3)
Price, T. Douglas (3)
Sørensen, Lasse (3)
Jensen, Theis Zetner ... (3)
Refoyo-Martínez, Alb ... (3)
Kristiansen, Kristia ... (3)
Vimala, Tharsika (3)
Gotfredsen, Anne Bir ... (3)
Lysdahl, Per (3)
Iversen, Rune (3)
Wåhlin, Sidsel (3)
Willerslev, Eske (3)
Avelar-Pereira, Bárb ... (3)
Lenfeldt, Niklas (3)
visa färre...
Lärosäte
Umeå universitet (104)
Karolinska Institutet (32)
Luleå tekniska universitet (23)
Stockholms universitet (19)
Göteborgs universitet (10)
Uppsala universitet (7)
visa fler...
Lunds universitet (6)
Linköpings universitet (4)
Örebro universitet (2)
Linnéuniversitetet (2)
Kungliga Tekniska Högskolan (1)
Jönköping University (1)
Mittuniversitetet (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (129)
Svenska (5)
Latin (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (88)
Teknik (37)
Samhällsvetenskap (10)
Naturvetenskap (9)
Humaniora (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy