SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Walhovd Kristine B) "

Sökning: WFRF:(Walhovd Kristine B)

  • Resultat 11-20 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Glasø de Lange, Ann-Marie, et al. (författare)
  • White matter integrity as a marker for cognitive plasticity in aging
  • 2016
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 47, s. 74-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related differences in white matter (WM) integrity are substantial, but it is unknown whether between subject variability in WM integrity influences the capacity for cognitive improvement. We investigated the effects of memory training related to active and passive control conditions in older adults and tested whether WM integrity at baseline was predictive of training benefits. We hypothesized that (1) memory improvement would be restricted to the training group, (2) widespread areas would show greater mean diffusivity (MD) and lower fractional anisotropy in older adults relative to young adults, and (3) within these areas, variability in WM microstructure in the older group would be predictive of training gains. The results showed that only the group receiving training improved their memory. Significant age differences in MD and fractional anisotropy were found in widespread areas. Within these areas, voxelwise analyses showed a negative relationship between MD and memory improvement in 3 clusters, indicating that WM integrity could serve as a marker for the ability to adapt in response to cognitive challenges in aging. 
  •  
12.
  • Gorbach, Tetiana, 1991-, et al. (författare)
  • Longitudinal association between hippocampus atrophy and episodic-memory decline in non-demented APOE ε4 carriers
  • 2020
  • Ingår i: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. - : John Wiley & Sons. - 2352-8729. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The apolipoprotein E (APOE) ε4 allele is the main genetic risk factor for Alzheimer's disease (AD), accelerated cognitive aging, and hippocampal atrophy, but its influence on the association between hippocampus atrophy and episodic-memory decline in non-demented individuals remains unclear.Methods: We analyzed longitudinal (two to six observations) magnetic resonance imaging (MRI)–derived hippocampal volumes and episodic memory from 748 individuals (55 to 90 years at baseline, 50% female) from the European Lifebrain consortium.Results: The change-change association for hippocampal volume and memory was significant only in ε4 carriers (N = 173, r = 0.21, P = .007; non-carriers: N = 467, r = 0.073,P = .117). The linear relationship was significantly steeper for the carriers [t(629) =2.4, P = .013]. A similar trend toward a stronger change-change relation for carriers was seen in a subsample with more than two assessments.Discussion: These findings provide evidence for a difference in hippocampus-memory association between ε4 carriers and non-carriers, thus highlighting how genetic factors modulate the translation of the AD-related pathophysiological cascade into cognitive deficits.
  •  
13.
  • Grydeland, Håkon, et al. (författare)
  • Self-reported sleep relates to microstructural hippocampal decline in beta-amyloid positive Adults beyond genetic risk
  • 2021
  • Ingår i: Sleep. - : Oxford University Press. - 0161-8105 .- 1550-9109. ; 44:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Study Objectives: A critical role linking sleep with memory decay and beta-amyloid (A beta) accumulation, two markers of Alzheimer's disease (AD) pathology, may be played by hippocampal integrity. We tested the hypotheses that worse self-reported sleep relates to decline in memory and intra-hippocampal microstructure, including in the presence of A beta.Methods: Two-hundred and forty-three cognitively healthy participants, aged 19-81 years, completed the Pittsburgh Sleep Quality Index once, and two diffusion tensor imaging sessions, on average 3 years apart, allowing measures of decline in intra-hippocampal microstructure as indexed by increased mean diffusivity. We measured memory decay at each imaging session using verbal delayed recall. One session of positron emission tomography, in 108 participants above 44 years of age, yielded 23 A beta positive. Genotyping enabled control for APOE epsilon 4 status, and polygenic scores for sleep and AD, respectively.Results: Worse global sleep quality and sleep efficiency related to more rapid reduction of hippocampal microstructure over time. Focusing on efficiency (the percentage of time in bed at night spent asleep), the relation was stronger in presence of A beta accumulation, and hippocampal integrity decline mediated the relation with memory decay. The results were not explained by genetic risk for sleep efficiency or AD.Conclusions: Worse sleep efficiency related to decline in hippocampal microstructure, especially in the presence of A beta accumulation, and A beta might link poor sleep and memory decay. As genetic risk did not account for the associations, poor sleep efficiency might constitute a risk marker for AD, although the driving causal mechanisms remain unknown.
  •  
14.
  • Halaas, Nathalie Bodd, et al. (författare)
  • CSF sTREM2 and Tau Work Together in Predicting Increased Temporal Lobe Atrophy in Older Adults.
  • 2020
  • Ingår i: Cerebral cortex (New York, N.Y. : 1991). - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 30:4, s. 2295-2306
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroinflammation may be a key factor in brain atrophy in aging and age-related neurodegenerative disease. The objective of this study was to test the association between microglial expression of soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2), as a measure of neuroinflammation, and brain atrophy in cognitively unimpaired older adults. Brain magnetic resonance imagings (MRIs) and cerebrospinal fluid (CSF) sTREM2, total tau (t-tau), phosphorylated181 tau (p-tau), and Aβ42 were analyzed in 115 cognitively unimpaired older adults, classified according to the A/T/(N)-framework. MRIs were repeated after 2 (n=95) and 4 (n=62) years. High baseline sTREM2 was associated with accelerated cortical thinning in the temporal cortex of the left hemisphere, as well as bilateral hippocampal atrophy, independently of age, Aβ42, and tau. sTREM2-related atrophy only marginally increased with biomarker positivity across the AD continuum (A-T- #x2292; A+T- #x2292; A+T+) but was significantly stronger in participants with a high level of p-tau (T+). sTREM2-related cortical thinning correlated significantly with areas of high microglial-specific gene expression in the Allen Human Brain Atlas. In conclusion, increased CSF sTREM2 was associated with accelerated cortical and hippocampal atrophy in cognitively unimpaired older participants, particularly in individuals with tau pathology. This suggests a link between neuroinflammation, neurodegeneration, and amyloid-independent tauopathy.
  •  
15.
  • Lövdén, Martin, 1972, et al. (författare)
  • No moderating influence of education on the association between changes in hippocampus volume and memory performance in aging
  • 2023
  • Ingår i: Aging Brain. - : Elsevier. - 2589-9589. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Contemporary accounts of factors that may modify the risk for age-related neurocognitive disorders highlight education and its contribution to a cognitive reserve. By this view, individuals with higher educational attainment should show weaker associations between changes in brain and cognition than individuals with lower educational attainment. We tested this prediction in longitudinal data on hippocampus volume and episodic memory from 708 middle-aged and older individuals using local structural equation modeling. This technique does not require categorization of years of education and does not constrain the shape of relationships, thereby maximizing the chances of revealing an effect of education on the hippocampus-memory association. The results showed that the data were plausible under the assumption that there was no influence of education on the association between change in episodic memory and change in hippocampus volume. Restricting the sample to individuals with elevated genetic risk for dementia (APOE ε4 carriers) did not change these results. We conclude that the influence of education on changes in episodic memory and hippocampus volume is inconsistent with predictions by the cognitive reserve theory.
  •  
16.
  • Ness, Hedda T., et al. (författare)
  • Reduced Hippocampal-Striatal Interactions during Formation of Durable Episodic Memories in Aging
  • 2022
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 32:11, s. 2358-2372
  • Tidskriftsartikel (refereegranskat)abstract
    • Encoding of durable episodic memories requires cross-talk between the hippocampus and multiple brain regions. Changes in these hippocampal interactions could contribute to age-related declines in the ability to form memories that can be retrieved after extended time intervals. Here we tested whether hippocampal-neocortical- and subcortical functional connectivity (FC) observed during encoding of durable episodic memories differed between younger and older adults. About 48 younger (20-38 years; 25 females) and 43 older (60-80 years; 25 females) adults were scanned with fMRI while performing an associative memory encoding task. Source memory was tested ~20 min and ~6 days postencoding. Associations recalled after 20 min but later forgotten were classified as transient, whereas memories retained after long delays were classified as durable. Results demonstrated that older adults showed a reduced ability to form durable memories and reduced hippocampal-caudate FC during encoding of durable memories. There was also a positive relationship between hippocampal-caudate FC and higher memory performance among the older adults. No reliable age group differences in durable memory-encoding activity or hippocampal-neocortical connectivity were observed. These results support the classic theory of striatal alterations as one cause of cognitive decline in aging and highlight that age-related changes in episodic memory extend beyond hippocampal-neocortical connections.
  •  
17.
  • Nyberg, Lars, et al. (författare)
  • Educational attainment does not influence brain aging
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Education has been related to various advantageous lifetime outcomes. Here, using longitudinal structural MRI data (4,422 observations), we tested the influential hypothesis that higher education translates into slower rates of brain aging. Cross-sectionally, education was modestly associated with regional cortical volume. However, despite marked mean atrophy in the cortex and hippocampus, education did not influence rates of change. The results were replicated across two independent samples. Our findings challenge the view that higher education slows brain aging.
  •  
18.
  • Nyberg, Lars, 1966-, et al. (författare)
  • Individual differences in brain aging : heterogeneity in cortico-hippocampal but not caudate atrophy rates
  • 2023
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 33:9, s. 5075-5081
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well documented that some brain regions, such as association cortices, caudate, and hippocampus, are particularly prone to age-related atrophy, but it has been hypothesized that there are individual differences in atrophy profiles. Here, we document heterogeneity in regional-atrophy patterns using latent-profile analysis of 1,482 longitudinal magnetic resonance imaging observations. The results supported a 2-group solution reflecting differences in atrophy rates in cortical regions and hippocampus along with comparable caudate atrophy. The higher-atrophy group had the most marked atrophy in hippocampus and also lower episodic memory, and their normal caudate atrophy rate was accompanied by larger baseline volumes. Our findings support and refine models of heterogeneity in brain aging and suggest distinct mechanisms of atrophy in striatal versus hippocampal-cortical systems.
  •  
19.
  • Persson, Ninni, 1975- (författare)
  • The aging brain and changes in cognitive performance : Findings from morphometry and quantitative susceptibility mapping of iron
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Brain aging is a heterogeneous phenomenon, and this thesis illustrates how the course of aging can vary within individuals over time and between individuals as a function of age, sex, and genetic variability. We used two contrasts from magnetic resonance imaging (MRI), namely spin-lattice T1-weighted imaging, and quantitative susceptibility mapping (QSM) from gradient-echo images, to picture the aging brain, by means of morphometric measures and brain-iron concentrations. Within each study, the same rigorous imaging acquisitioning protocols were used over large samples sizes of 167-183 individuals, which contribute to the uniqueness of the studies. Most of the current knowledge about the aging brain rests on the foundation of cross-sectional age-related differences, and studies I and III contribute to current knowledge with longitudinal designs to investigate individual rates of change. The importance of genetic variation in relation to regional brain changes was addressed with a specific emphasis on functional polymorphisms involved in pro-inflammatory responses. These studies further shed light on the importance of bi-directional relations between structural integrity and maintained cognitive abilities over time. Study II is the largest study to date to have quantitative susceptibility estimates examined in healthy adults, and the first in-vivo report to show a lowering in overall subcortical brain iron estimates in women from midlife to old age. Studies I and III are unique by examining longitudinal differences in anatomical brain regions using high resolution images from a 4 Tesla scanner. Peripheral vascular risk factors were not strong determinants of either brain- or cognitive changes in the studied samples. The results are discussed in the context of cognitive reserve, the brain maintenance hypothesis, and potential influences of hormones, inflammation and oxidative stress.
  •  
20.
  • Roe, James M., et al. (författare)
  • Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease
  • 2021
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging and Alzheimer’s disease (AD) are associated with progressive brain disorganization. Although structural asymmetry is an organizing feature of the cerebral cortex it is unknown whether continuous age- and AD-related cortical degradation alters cortical asymmetry. Here, in multiple longitudinal adult lifespan cohorts we show that higher-order cortical regions exhibiting pronounced asymmetry at age ~20 also show progressive asymmetry-loss across the adult lifespan. Hence, accelerated thinning of the (previously) thicker homotopic hemisphere is a feature of aging. This organizational principle showed high consistency across cohorts in the Lifebrain consortium, and both the topological patterns and temporal dynamics of asymmetry-loss were markedly similar across replicating samples. Asymmetry-change was further accelerated in AD. Results suggest a system-wide dedifferentiation of the adaptive asymmetric organization of heteromodal cortex in aging and AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 28
Typ av publikation
tidskriftsartikel (26)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Fjell, Anders M. (27)
Walhovd, Kristine B. (27)
Nyberg, Lars, 1966- (18)
Bartrés-Faz, David (15)
Lindenberger, Ulman (14)
Brandmaier, Andreas ... (13)
visa fler...
Drevon, Christian A. (12)
Mowinckel, Athanasia ... (12)
Solé-Padullés, Crist ... (12)
Ebmeier, Klaus P. (12)
Sørensen, Øystein (12)
Düzel, Sandra (10)
Vidal-Piñeiro, Didac (9)
Kühn, Simone (9)
Amlien, Inge K. (9)
Zsoldos, Eniko (8)
Baaré, William F.C. (8)
Madsen, Kathrine Ska ... (8)
Ghisletta, Paolo (8)
Boraxbekk, Carl-Joha ... (7)
Watne, Leiv Otto (6)
Pudas, Sara, Docent, ... (6)
Suri, Sana (6)
Wang, Yunpeng (6)
Kievit, Rogier A. (6)
Nyberg, Lars (4)
Idland, Ane-Victoria (4)
Penninx, Brenda W J ... (4)
Bertram, Lars (4)
Knights, Ethan (4)
Demuth, Ilja (4)
Kievit, Rogier (4)
Wagner, Gerd (4)
Sexton, Claire E. (4)
Binnewies, Julia (3)
Nawijn, Laura (3)
Plachti, Anna (3)
Demnitz, Naiara (3)
Kietzmann, Tim C. (3)
Blennow, Kaj, 1958 (2)
Andersson, Micael (2)
Sexton, Claire (2)
Lundquist, Anders, 1 ... (2)
Panizzon, Matthew S. (2)
Kremen, William S. (2)
Penninx, Brenda (2)
Lövdén, Martin, 1972 ... (2)
Dale, Anders M. (2)
Johansen-Berg, Heidi (2)
Buchmann, Nikolaus (2)
visa färre...
Lärosäte
Umeå universitet (23)
Göteborgs universitet (4)
Karolinska Institutet (2)
Stockholms universitet (1)
Lunds universitet (1)
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Samhällsvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy