SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zorzano María Paz) "

Sökning: WFRF:(Zorzano María Paz)

  • Resultat 131-140 av 152
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
131.
  • Ullán, Aurora, et al. (författare)
  • Analysis of wind-induced dynamic pressure fluctuations during one and a half Martian years at Gale Crater
  • 2017
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 288, s. 78-87
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rover Environmental Monitoring Station (REMS) instrument on-board the Mars Science Laboratory (MSL) has acquired unprecedented measurements of key environmental variables at the base of Gale Crater. The pressure measured by REMS shows modulations with a very structured pattern of short-time scale (of the order of seconds to several minutes) mild fluctuations (typically up to 0.2 Pa at daytime and 1 Pa at night-time). These dynamic pressure oscillations are consistent with wind, air and ground temperature modulations measured simultaneously by REMS. We detect the signals of a repetitive pattern of upslope/downslope winds, with maximal speeds of about 21 m/s, associated with thermal changes in the air and surface temperatures, that are initiated after sunset and finish with sunrise proving that Gale, a 4.5 km deep impact crater, is an active Aeolian environment. At nighttime topographic slope winds are intense with maximal activity from 17:00 through 23:00 Local Mean Solar Time, and simultaneous changes of surface temperature are detected. During the day, the wind modulations are related to convection of the planetary boundary layer, winds are softer with maximum wind speed of about 14 m/s. The ground temperature is modulated by the forced convection of winds, with amplitudes between 0.2 K and 0.5 K, and the air temperatures fluctuate with amplitudes of about 2 K. The analysis of more than one and a half Martian years indicates the year-to-year repeatability of these environmental phenomena. The wind pattern minimizes at the beginning of the south hemisphere winter (Ls 90) season and maximizes during late spring and early summer (Ls 270). The procedure that we present here is a useful tool to investigate in a semi-quantitative way the winds by: i) filling both seasonal and diurnal gaps where wind measurements do not exist, ii) providing an alternative way for comparisons through different measuring principia and, iii) filling the gap of observation of short time-wind variability, where the REMS wind-sensor is blind
  •  
132.
  • Vakkada Ramachandran, Abhilash (författare)
  • A planetary chamber to investigate the thermal and water cycle on Mars
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The water processes that affect the upper layers of the surface of Mars are not yet fully understood. Describing the processes that may induce changes in the water content ofthe surface is critical to determine the present-day habitability of the Martian surface,understand the atmospheric water cycle, and estimate the efficiency of future water extraction procedures from the regolith for In-Situ-Resource-Utilization (ISRU). This PhD thesis describes the design, development, and plausible uses of a Martian environmental facility ‘SpaceQ chamber’ which allows to simulate the near surface water cycle.This facility has been specifically designed to investigate the effect of water on the Martian surface. SpaceQ has been used to investigate the material curation and has demonstrated that the regolith, when mixed with super absorbent polymer (SAP), water, and binders exposed to Martian conditions, can form a solid block, and retain more than 80% of the added water, which may be of interest to screen radiation while maintaining a low weight. The thesis also includes the testing of HABIT operation, of theESA/IKI ExoMars 2022 robotic mission to Mars, within the SpaceQ chamber, underMartian conditions similar to those expected at Oxia Planum. The tests monitor the performance of the brine compartment, when deliquescent salts are exposed to atmospheric water.In this thesis, a computational model of the SpaceQ using COMSOL Multiphysics has been implemented to study the thermal gradients and the near surface water cycle under Martian temperature and pressure experimental conditions. The model shows good agreement with experiments on the thermal equilibration time scales and gradients. The model is used to extrapolate the one-point relative humidity measurement of the experimental to each grid points in the simulation. This gives an understanding ofthe gradient in atmospheric water relative humidity to which the experimental samples such as deliquescent salts and Martian regolith simulants are exposed at different time intervals. The comparison of the thermal simulation and the experimental behavior of HABIT instrument tests, shows an extra internal heating source of about 1 W which can be attributed to the hydration and deliquescence of the salts exposed to Martian conditions when in contact with atmospheric moisture.Finally, this thesis experimentally demonstrates that pure liquid water can persist for 3.5 to 4.5 hours at Mars surface conditions. The simulated ground captured 53% of the atmospheric water either as pure liquid water, hydrate, or brine. The result concludes  that the relative humidity values at night-time on Mars may allow for significant water absorption by the ground, which is released at sunrise. The water cycle dynamics near the surface is therefore always out of equilibrium. After frost formation, thin films of water may survive for a few hours. The results of this thesis about the water cycle on Mars, and about the interaction of atmospheric water with regolith and salts, have implications for the present-day habitability of the Martian surface and planetary protection policies.
  •  
133.
  • Vakkada Ramachandran, Abhilash, et al. (författare)
  • Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars
  • 2021
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 21:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The water content of the upper layers of the surface of Mars is not yet quantified. Laboratory simulations are the only feasible way to investigate this in a controlled way on Earth, and then compare it with remote and in situ observations of spacecrafts on Mars. Describing the processes that may induce changes in the water content of the surface is critical to determine the present-day habitability of the Martian surface, to understand the atmospheric water cycle, and to estimate the efficiency of future water extraction procedures from the regolith for In Situ Resource Utilization (ISRU). This paper illustrates the application of the SpaceQ facility to simulate the near-surface water cycle under Martian conditions. Rover Environmental Monitoring Station (REMS) observations at Gale crater show a non-equilibrium situation in the atmospheric H2O volume mixing ratio (VMR) at night-time, and there is a decrease in the atmospheric water content by up to 15 g/m2 within a few hours. This reduction suggests that the ground may act at night as a cold sink scavenging atmospheric water. Here, we use an experimental approach to investigate the thermodynamic and kinetics of water exchange between the atmosphere, a non-porous surface (LN2-chilled metal), various salts, Martian regolith simulant, and mixtures of salts and simulant within an environment which is close to saturation. We have conducted three experiments: the stability of pure liquid water around the vicinity of the triple point is studied in experiment 1, as well as observing the interchange of water between the atmosphere and the salts when the surface is saturated; in experiment 2, the salts were mixed with Mojave Martian Simulant (MMS) to observe changes in the texture of the regolith caused by the interaction with hydrates and liquid brines, and to quantify the potential of the Martian regolith to absorb and retain water; and experiment 3 investigates the evaporation of pure liquid water away from the triple point temperature when both the air and ground are at the same temperature and the relative humidity is near saturation. We show experimentally that frost can form spontaneously on a surface when saturation is reached and that, when the temperature is above 273.15 K (0 °C), this frost can transform into liquid water, which can persist for up to 3.5 to 4.5 h at Martian surface conditions. For comparison, we study the behavior of certain deliquescent salts that exist on the Martian surface, which can increase their mass between 32% and 85% by absorption of atmospheric water within a few hours. A mixture of these salts in a 10% concentration with simulant produces an aggregated granular structure with a water gain of approximately 18- to 50-wt%. Up to 53% of the atmospheric water was captured by the simulated ground, as pure liquid water, hydrate, or brine.
  •  
134.
  • Vakkada Ramachandran, Abhilash, et al. (författare)
  • Numerical heat transfer study of a space environmental testing facility using COMSOL Multiphysics
  • 2022
  • Ingår i: Thermal Science and Engineering Progress. - : Elsevier. - 2451-9049. ; 29
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental chambers are used to test the expected performance of space instrumentation and to investigate certain processes which are relevant in space or other planetary environments. In this study, a computational model of an existing Martian experimental facility is investigated numerically using COMSOL Multiphysics. For this purpose, we simulate the near surface water cycle under Martian temperature and pressure experimental conditions as tested inside the chamber and we compare the simulations with the experimental data. The model shows good agreement with experiments on the equilibration time scales and thermal gradients. Due to the imposibility to place sensors at multiple locations inside the chamber, we use the model to extrapolate the one-point relative humidity of the experimental data to each grid points in the simulation. This model gives an understanding of the gradient in atmospheric water relative humidity to which the experimental samples such as deliquescent salts and Martian regolith simulants are exposed at different time intervals. The of the performance of HABIT instrument during the tests, of the ESA/IKI ExoMars 2022 robotic mission to Mars, when compared with the model shows the existence of an extra internal heating source of about 1 W which can be attributed to the hydration and deliquescence of the salts exposed to Martian conditions when in contact with atmospheric moisture. In addition, the presented model is used to predict the thermal gradients and understand the time response when the chamber is heated in vacuum conditions. Our analysis shows that for thermal vacuum tests, the chamber will take about 2.5 h to reach the test temperature of 420 K.
  •  
135.
  • Vakkada Ramachandran, Abhilash, et al. (författare)
  • Space Environmental Chamber for Planetary Studies
  • 2020
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 20:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a versatile simulation chamber that operates under representative space conditions (pressures from < 10−5 mbar to ambient and temperatures from 163 to 423 K), the SpaceQ chamber. This chamber allows to test instrumentation, procedures, and materials and evaluate their performance when exposed to outgassing, thermal vacuum, low temperatures, baking, dry heat microbial reduction (DHMR) sterilization protocols, and water. The SpaceQ is a cubical stainless-steel chamber of 27,000 cm3 with a door of aluminum. The chamber has a table which can be cooled using liquid nitrogen. The chamber walls can be heated (for outgassing, thermal vacuum, or dry heat applications) using an outer jacket. The chamber walls include two viewports and 12 utility ports (KF, CF, and Swagelok connectors). It has sensors for temperature, relative humidity, and pressure, a UV–VIS–NIR spectrometer, a UV irradiation lamp that operates within the chamber as well as a stainless-steel syringe for water vapor injection, and USB, DB-25 ports to read the data from the instruments while being tested inside. This facility has been specifically designed for investigating the effect of water on the Martian surface. The core novelties of this chamber are: (1) its ability to simulate the Martian near-surface water cycle by injecting water multiple times into the chamber through a syringe which allows to control and monitor precisely the initial relative humidity inside with a sensor that can operate from vacuum to Martian pressures and (2) the availability of a high-intensity UV lamp, operating from vacuum to Martian pressures, within the chamber, which can be used to test material curation, the role of the production of atmospheric radicals, and the degradation of certain products like polymers and organics. For illustration, here we present some applications of the SpaceQ chamber at simulated Martian conditions with and without atmospheric water to (i) calibrate the ground temperature sensor of the Engineering Qualification Model of HABIT (HabitAbility: Brines, Irradiation and Temperature) instrument, which is a part of ExoMars 2022 mission. These tests demonstrate that the overall accuracy of the temperature retrieval at a temperature between −50 and 10 °C is within 1.3 °C and (ii) investigate the curation of composite materials of Martian soil simulant and binders, with added water, under Martian surface conditions under dry and humid conditions. Our studies have demonstrated that the regolith, when mixed with super absorbent polymer (SAP), water, and binders exposed to Martian conditions, can form a solid block and retain more than 80% of the added water, which may be of interest to screen radiation while maintaining a low weight. 
  •  
136.
  • Vandaele, Ann Carine, et al. (författare)
  • Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter
  • 2019
  • Ingår i: Nature. - : Springer. - 1476-4687 .- 1476-4687 .- 0028-0836. ; 568:7753, s. 521-525
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Global dust storms on Mars are rare1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere3, primarily owing to solar heating of the dust3. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars4. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes5,6, as well as a decrease in the water column at low latitudes7,8. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H2O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals3. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere.
  •  
137.
  • Vázquez, Luiz, et al. (författare)
  • Spectral information retrieval from integrated broadband photodiode Martian ultraviolet measurements
  • 2007
  • Ingår i: Optics Letters. - 0146-9592 .- 1539-4794. ; 32:17, s. 2596-2598
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose an algorithm to retrieve the global features of the spectral dependence of the ultraviolet (LTV) irradiance from integrated, broadband LTV measurements performed with a set of photodiodes with different LTV filters. This fit, when applied to ground-based measurements and compared with the incident Solar spectral irradiance on the top of the atmosphere, may be used to extract the spectral dependence of the LTV opacity and the most relevant parameters characterizing the scattering with atmospheric aerosol (Angstrom exponent, etc.) as well as the biological effective doses. In this way, using a set of photodiodes instead of a spectrophotometer, one may get spectral information within very low mass, package, and weight constraints, which is particularly useful for space missions. We consider its application for the rover-based exploration of the Martian ground, which is subject to daily and seasonal opacity variations
  •  
138.
  • Webster, Christopher R., et al. (författare)
  • Mars methane detection and variability at Gale crater
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 347:6220, s. 415-417
  • Tidskriftsartikel (refereegranskat)abstract
    • Reports of plumes or patches of methane in the Martian atmosphere that vary over monthly timescales have defied explanation to date. From in situ measurements made over a 20-month period by the Tunable Laser Spectrometer (TLS) of the Sample Analysis at Mars (SAM) instrument suite on Curiosity at Gale Crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 ppbv at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet (UV) degradation of accreted interplanetary dust particles (IDP’s) or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period, we observed elevated levels of methane of 7.2 ± 2.1 (95% CI) ppbv implying that Mars is episodically producing methane from an additional unknown source.
  •  
139.
  •  
140.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 131-140 av 152
Typ av publikation
tidskriftsartikel (116)
konferensbidrag (27)
doktorsavhandling (5)
forskningsöversikt (3)
annan publikation (1)
Typ av innehåll
refereegranskat (134)
övrigt vetenskapligt/konstnärligt (17)
populärvet., debatt m.m. (1)
Författare/redaktör
Martin-Torres, Javie ... (103)
Zorzano, Maria Paz (94)
Zorzano Mier, María- ... (51)
Vakkada Ramachandran ... (17)
Mathanlal, Thasshwin (15)
Gómez-Elvira, Javier (15)
visa fler...
Bhardwaj, Anshuman (14)
Soria-Salinas, Álvar ... (12)
Israel Nazarious, Mi ... (12)
Lepinette, Alain (9)
Moores, John E. (9)
Lemmon, Mark T. (9)
Hochberg, David (9)
Sam, Lydia (8)
Kahanpää, Henrik (8)
Navarro, Sara (8)
Vasavada, Ashwin R. (7)
Sebastián, Eduardo (7)
Martínez-Frías, Jesu ... (6)
Genzer, Maria (6)
Harri, Ari-Matti (6)
Steele, Andrew (5)
Navarro-Gonzalez, Ra ... (5)
Escamilla-Roa, Eliza ... (5)
Fonseca, Ricardo (5)
Mier, Maria-Paz Zorz ... (5)
Cordoba-Jabonero, Ca ... (5)
Mahaffy, Paul R. (5)
Conrad, Pamela G. (5)
McKay, Christopher P ... (5)
Armiens, Carlos (5)
Haberle, Robert (5)
Rafkin, Scot C. R. (5)
Morán, Federico (5)
Vazquez, L (4)
Siljeström, Sandra (4)
Smith, M. D. (4)
Freissinet, Caroline (4)
Schmidt, W. (4)
McConnochie, Timothy ... (4)
Renno, Nilton (4)
Mischna, Michael (4)
Rennó, Nilton O. (4)
Harri, A. M. (4)
de la Torre Juárez, ... (4)
Newman, C. (4)
Mischna, M. (4)
Glavin, Daniel P. (4)
Cantor, Bruce (4)
Valentin-Serrano, Pa ... (4)
visa färre...
Lärosäte
Luleå tekniska universitet (148)
RISE (4)
Örebro universitet (1)
Malmö universitet (1)
Språk
Engelska (151)
Spanska (1)
Forskningsämne (UKÄ/SCB)
Teknik (140)
Naturvetenskap (28)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy