SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinsk bioteknologi) hsv:(Biomedicinsk laboratorievetenskap/teknologi) "

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinsk bioteknologi) hsv:(Biomedicinsk laboratorievetenskap/teknologi)

  • Resultat 11-20 av 1287
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Cros, Olivier (författare)
  • Structural properties of the mastoid using image analysis and visualization
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The mastoid, located in the temporal bone, houses an air cell system whose cells have a variation in size that can go far below current conventional clinical CT scanner resolution. Therefore, the mastoid air cell system is only partially represented in a CT scan. Where the conventional clinical CT scanner lacks level of minute details, micro-CT scanning provides an overwhelming amount of ne details. The temporal bone being one of the most complex in the human body, visualization of micro-CT scanning of this boneawakens the curiosity of the experimenter, especially with the correct visualization settings.This thesis first presents a statistical analysis determining the surface area to volume ratio of the mastoid air cell system of human temporal bone, from micro-CT scanning using methods previously applied for conventional clinical CT scans. The study compared current results with previous studies, with successive downsampling the data down to a resolution found in conventional clinical CT scanning. The results from the statistical analysis showed that all the small mastoid air cells, that cannot be detected in conventional clinical CT scans, do heavily contribute to the estimation of the surface area, and in consequence to the estimation of the surface area to volume ratio by a factor of about 2.6. Such a result further strengthens the idea of the mastoid to play an active role in pressure regulation and gas exchange.Discovery of micro-channels through specific use of a non-traditional transfer function was then reported, where a qualitative and a quantitative pre-analysis were performed and reported. To gain more knowledge about these micro-channels, a local structure tensor analysis was applied where structures are described in terms of planar, tubular, or isotropic structures. The results from this structural tensor analysis suggest these microchannels to potentially be part of a more complex framework, which hypothetically would provide a separate blood supply for the mucosa lining the mastoid air cell system.The knowledge gained from analysing the micro-channels as locally providing blood to the mucosa, led to the consideration of how inflammation of the mucosa could impact the pneumatization of the mastoid air cell system. Though very primitive, a 3D shape analysis of the mastoid air cell system was carried out. The mastoid air cell system was first represented in a compact form through a medial axis, from which medial balls could be used. The medial balls, representative of how large the mastoid air cells can be locally, were used in two complementary clustering methods, one based on the size diameter of the medial balls and one based on their location within the mastoid air cell system. From both quantitative and qualitative statistics, it was possible to map the clusters based on pre-defined regions already described in the literature, which opened the door for new hypotheses concerning the effect of mucosal inflammation on the mastoid pneumatization.Last but not least, discovery of other structures, previously unreported in the literature, were also visually observed and briefly discussed in this thesis. Further analysis of these unknown structures is needed.
  •  
12.
  • Desmarais, Samantha M, et al. (författare)
  • High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography
  • 2015
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 290:52, s. 31090-31100
  • Tidskriftsartikel (refereegranskat)abstract
    • The bacterial cell wall is a network of glycan strands crosslinked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination.
  •  
13.
  •  
14.
  • Grannas, Karin, 1983- (författare)
  • Improvements and Applications of in situ Proximity Ligation Assays
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The cells building up the human body is in constant communication with each other. This communication is done through large complex networks of signaling pathways for inter- and intracellular signal transduction. The signaling activity regulates many important processes, for example cell death, proliferation and differentiation. Information within the signaling networks is communicated over the cell membrane, through the cytoplasm and entering the nucleus by protein activities such as protein-protein interactions (PPIs) and post translation modifications (PTMs). The cells adapts to their own environment, responding to multiple stimuli from their surroundings. This in combination with memory of previous responses, difference in cell cycles stages and sometimes altered genetic background generates heterogeneous cell populations in which every cell is slightly different from its neighbor. This calls for methods to study the activity of endogenous proteins in individual cells within a population.In situ proximity ligation assay (in situ PLA) was originally developed to visualize interaction between endogenous proteins in fixed cells and tissue and can also be applied to detect PTMs. This thesis describe the application of in situ PLA to study PPIs in signaling pathways and the work to further develop and improve techniques for proximity dependent detection. In paper I in situ PLA is used to study cross talk between the Hippo and the TGFβ signaling pathways. The study shows the complex formation by the transcription co-factors of the Hippo pathway, Yap and Taz, and the main effectors of the TGFβ pathway Smad2/3. Furthermore the density dependent localization of the interaction is described.Paper II presents a new version of the in situ PLA probes for simultaneous detection of multiple complexes. Visualization of various complexes involving EGFR, Her2 and Her3 is presented as a proof of concept.The efficiency of in situ PLA is limited by several factors, one being the design of PLA probes and oligonucleotide systems. Even upon proximal binding of the probes there is a risk of formation of non-circular ligation products, which cannot be amplified and detected. In Paper III two new PLA probes are presented aiming to reduce the formation of non-circular ligation product and hence increase the detection efficiency of in situ PLA.Paper IV presents a new method for detection of protein complexes and phosphorylation; proxHCR. ProxHCR combines signal amplification by enzyme free hybridization chain reaction (HCR) with the requirement of proximal binding of two affinity probes. As a proof of principle the method is used to detect multiple complexes and protein phosphorylation in fixed cells and tissue.  
  •  
15.
  • Gustafsson, Johan, 1976, et al. (författare)
  • Cellular limitation of enzymatic capacity explains glutamine addiction in cancers
  • 2022
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Metabolism within the tumor microenvironment, where a complex mixture of different cell types resides in a nutrient-deprived surrounding, is not fully understood due to difficulties in measuring metabolic fluxes and exchange of metabolites between different cell types in vivo. Genome-scale metabolic modeling enables estimation of such exchange fluxes as well as an opportunity to gain insight into the metabolic behavior of individual cell types. Here, we estimated the availability of nutrients and oxygen within the tumor microenvironment using concentration measurements from blood together with a metabolite diffusion model. In addition, we developed an approach to efficiently apply enzyme usage constraints in a comprehensive metabolic model of human cells. The combined modeling reproduced severe hypoxic conditions and the Warburg effect, and we found that limitations in enzymatic capacity contribute to cancer cells’ preferential use of glutamine as a substrate to the citric acid cycle. Furthermore, we investigated the common belief that some stromal cells are exploited by cancer cells to produce metabolites useful for the cancer cells. We identified a total of 233 potential metabolites that could support collaboration between cancer cells and cancer associated fibroblasts, but when limiting to metabolites previously identified to participate in such collaboration, no growth advantage was observed. Our work highlights the importance of enzymatic capacity limitations for cell behaviors and exemplifies the utility of enzyme constrained models for accurate prediction of metabolism in cells and tumor microenvironments.
  •  
16.
  • Hahn, Max, 1993- (författare)
  • Characterizing the pancreatic "isletome" : 3D optical imaging to study diabetes
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The pancreas is a specialised multipurpose organ, that can be separated into two major compartments: endocrine and exocrine. The exocrine part makes up the majority of the organ volume and functions to secrete digestive enzymes into the small intestine. Notably, endocrine islets of Langerhans are embedded and scattered in vast numbers throughout the exocrine space. These miniature functional units are composed of different cell types that secrete hormones into the blood stream. The most abundant islet-cell is the insulin-producing β-cell. Highly coordinated, the endocrine cells are the primary regulators of energy homeostasis in the body. Together, the collective islet volume constitutes the pancreatic “isletome”, a synchronised, complex and size-equilibrated system that is able to respond to various metabolic conditions. Indeed, environmental and/or genetic conditions often lead to impaired islet function and/or β-cell destruction leading to elevated blood glucose levels over time and eventually diabetes. Diabetes mellitus is a disease that currently affects more than 400 million individuals worldwide. As such, understanding pancreatic disease-related mechanisms is pivotal to the development of new and more effective therapeutic, or even curative, regimens. The deep location of the pancreas in the abdomen and the relatively low resolution of current clinical imaging approaches, however, render the pancreatic islets difficult to study when visually assessing endocrine function. Although non-invasive imaging techniques have yet to reach their full potential, post-mortem studies of the pancreas and rodent disease models offer unique insights into the process of diabetes disease dynamics.Diabetes induced by streptozotocin (STZ) is a widely used model system in pre-clinical research, where it is generally believed that the b-cells are depleted upon the administration of the drug. Yet, quantification of β-cell volume dynamics and underlying disease mechanisms have not been extensively described. Using optical projection tomography (OPT), light sheet fluorescence microscopy (LSFM) and advanced protocols for ex vivo whole organ three-dimensional (3D) imaging, this study demonstrated that STZ-induced β-cell depletion is modest, primarily affecting large islets, and is not the primary cause for the development of diabetes in STZ-diabetic mice. Combined with islet gene expression studies, the remaining β-cell volume in STZ-diabetic mice displayed a downregulation of glucose transporter type 2 (GLUT2), a transmembrane carrier vital for sensing blood glucose levels. Islet transplantation into the anterior chamber of the eye (ACE) reversed the STZ-induced hyperglycaemia and partially restored islet function, including GLUT2, but did not restore β-cell volume loss. Extensive 3D image datasets were generated as a resource to the research community. The combined results of this study indicated that STZ-induced hyperglycaemia is not caused by β-cell loss, but rather by dysfunctional β-cells and that recovery of islet function is restrained by continuous hyperglycaemia.3D imaging using OPT has proven to be a reliable technique in quantifying cellular/anatomical features of the mouse pancreas. However, the technique has rarely been applied to patient-derived tissues. Here, a label-free and non-destructive method was developed to assess clinical biopsies within hours of collection. Specifically, this study showed that autofluorescence-based imaging can be used to delineate tumours of the pancreas (pancreatic ductal adenocarcinoma, PDAC) in 3D, which may aid in identifying tumour margins in conjunction with resective surgery. Importantly, the protocol included a reversal pipeline so that other histological workflows could be applied to the same specimen. Furthermore, this study demonstrated that natural fluorescent substances in the endocrine cells provide sufficient contrast when quantifying both the volume and number of islets of Langerhans in the healthy pancreas. Altogether, the developed technique may provide a novel tool for the rapid 3D analysis of pancreatic biopsies that may complement and improve traditional pathological assessments.With the emergence of islet transplantation networks worldwide, access to fixed pancreatic tissues from diseased donors has dramatically improved. Hereby, the near instant autolysis of the pancreas post-mortem can generally be avoided, which provides the opportunity to quantitatively study the entire gland ex vivo within a conserved spatial context. Yet, mesoscopic 3D imaging of the pancreas (by OPT and/or LSFM) has been limited predominantly due to the obstacle of labelling larger tissue volumes. As such, a simple approach to antibody labelling and cellular imaging was developed in cubic centimetre-sized tissue cuboids that were mapped to the whole organ. By stitching the resultant datasets back into 3D space, this approach demonstrated how essentially any human organ may be analysed in full with high resolution. This technique was applied to pancreata from non-diabetic and type 2 diabetic (T2D) donors, analysing over 200 thousand islets, revealing features of the human pancreas that were not analysed in 3D previously, including high islet dense regions and intra-islet haemorrhaging. Crucially, this new technique may contribute to unveil a wealth of new insights into the complex pathophysiology of the “diabetic pancreas”.By applying the above method to the entire volume of the human pancreas, the absolute distribution and volume of insulin-positive cells in a pancreas from a donor with longstanding type 1 diabetes (T1D) was demonstrated for the first time. By dividing the 19 cm long organ into smaller pieces, followed by insulin labelling, OPT imaging and reconstruction in 3D space, approximately 173,000 insulin-positive objects were identified. By utilising tissue autofluorescence, the entire organ was reconstructed in 3D, together with blood vessels and ducts. These data indicated several important regional differences in β-cell mass, such as the uncinate process showing the highest density, which potentially reflects key aspects of disease dynamics. Furthermore, regions with a “punctated distribution” of single β-cells in close proximity to each other were identified. Although the significance of these observations needs to be elucidated, we speculate that these regions could be associated with pancreatic regeneration, which might permit the development of new interventions for clinical regenerative processes in the future. Altogether, this study represents the first whole organ account of β-cell distribution at the current level of resolution in an entire organ. As such, it may serve as an important advancement towards detailed whole organ analyses of endocrine cell identity/function, via a wide range of markers, in the study of normal anatomy and pathophysiology of the human pancreas.
  •  
17.
  • Katona, Borbala, et al. (författare)
  • Antibody Validation Strategy for Nuclear Receptors.
  • 2019
  • Ingår i: Methods in Molecular Biology. - New York, NY : Springer New York. - 1064-3745 .- 1940-6029. ; 1966, s. 79-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibodies are invaluable biological tools that we can use to detect the presence, location, or alteration of nuclear receptors. However, antibodies frequently cross-react with other proteins and their performance can vary from batch to batch, from application to application and from lab to lab. When each lot of antibody is not thoroughly validated for each assay, each sample type, and each lab and user, antibody-based assays can lead to flawed interpretations and reproducibility problems. In this chapter, we describe a scheme for thorough antibody validation, suitable for nuclear receptors. The method is based on using highly characterized positive and negative controls assembled into a validation tissue microarray (TMA). Through correlation of immunohistochemical staining (IHC) and mRNA levels over multiple tissues, use of current public databases, and assessment of binding to intended and nonintended targets using western blotting (WB), immunoprecipitation (IP), and mass spectrometry (MS), we describe a path for thoroughly validation of antibodies.
  •  
18.
  • Kortenkamp, Andreas, et al. (författare)
  • Removing Critical Gaps in Chemical Test Methods by Developing New Assays for the Identification of Thyroid Hormone System-Disrupting Chemicals-The ATHENA Project
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 21:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood-brain and blood-placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.
  •  
19.
  • Langer, Krzysztof, et al. (författare)
  • Rapid production and recovery of cell spheroids by automated droplet microfluidics
  • 2019
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Droplet microfluidics enables high throughput cell processing, analysis and screening by miniaturizing the reaction vessels to nano- or pico-liter water-in oil droplets, but like many other microfluidic formats, droplet microfluidics have not been interfaced with or automated by laboratory robotics. Here we demonstrate automation of droplet microfluidics based on an inexpensive liquid handling robot for the automated production of human scaffold-free cell spheroids, using pipette actuation and interfacing the pipetting tip with a droplet generating microfluidic chip. In this chip we produce highly mono-disperse 290μm droplets with diameter CV of 1.7%. By encapsulating cells in these droplets, we produce cell spheroids in droplets and recover them to standard formats at a throughput of 85000 spheroids per microfluidic circuit per hour. The viability of the cells in spheroids remains high after recovery only decreased by 4% starting from 96% after 16 hours incubation in nanoliter droplets. Scaffold-free cell spheroids and 3D tissue constructs recapitulate many aspects of functional human tissue more accurately than 2D or single cell cultures, but assembly methods for spheroids, e.g. hanging drop micro-plates, has had limited throughput. The increased throughput and decreased cost of our method enables spheroid production at the scale needed for lead discovery drug screening and approaches the cost where these micro tissues could be used as building blocks for organ scale regenerative medicine.
  •  
20.
  • Madsen, Rasmus Kirkegaard, 1979-, et al. (författare)
  • Metabolic responses to change in disease activity during tumor necrosis factor inhibition in patients with rheumatoid arthritis
  • 2012
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 11:7, s. 3796-3804
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessment of disease activity in patients with rheumatoid arthritis (RA) is of importance in the evaluation of treatment. The most important measure of disease activity is the Disease Activity Score counted in 28 joints (DAS28). In this study, we evaluated whether metabolic profiling could complement current measures of disease activity. Fifty-six patients, in two separate studies, were followed for two years after commencing anti-TNF therapy. DAS28 was assessed, and metabolic profiles were recorded at defined time points. Correlations between metabolic profile and DAS28 scores were analyzed using multivariate statistics. The metabolic responses to lowering DAS28 scores varied in different patients but could predict DAS28 scores at the individual and subgroup level models. The erythrocyte sedimentation rate (ESR) component in DAS28 was most correlated to the metabolite data, pointing to inflammation as the primary effect driving metabolic profile changes. Patients with RA had differing metabolic response to changes in DAS28 following anti-TNF therapy. This suggests that discovery of new metabolic biomarkers for disease activity will derive from studies at the individual and subgroup level. Increased inflammation, measured as ESR, was the main common effect seen in metabolic profiles from periods associated with high DAS28.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 1287
Typ av publikation
tidskriftsartikel (814)
konferensbidrag (216)
doktorsavhandling (108)
forskningsöversikt (51)
annan publikation (40)
bokkapitel (26)
visa fler...
licentiatavhandling (13)
rapport (7)
patent (6)
bok (3)
samlingsverk (redaktörskap) (2)
konstnärligt arbete (2)
visa färre...
Typ av innehåll
refereegranskat (996)
övrigt vetenskapligt/konstnärligt (266)
populärvet., debatt m.m. (24)
Författare/redaktör
Knutsson, Hans (23)
Lindecrantz, Kaj (20)
Lindecrantz, Kaj, 19 ... (17)
Hammarsten, Ola (16)
Sandberg, Frida (15)
Seoane, Fernando (15)
visa fler...
Laurell, Thomas (15)
Ask, Per (13)
Tenje, Maria (12)
Arnebrant, Thomas (11)
Thordstein, Magnus (11)
Andersson, Mats (10)
Ebbers, Tino (10)
Uhlén, Mathias (9)
Johansson, A (9)
Kjellmer, Ingemar, 1 ... (9)
Sjöqvist, Bengt-Arne ... (9)
Nilsson, Mats (8)
Nielsen, Jens B, 196 ... (8)
Borga, Magnus (8)
Orešič, Matej, 1967- (8)
Kocherbitov, Vitaly (8)
Ekman, Inger, 1952 (8)
Holzapfel, Gerhard A ... (8)
Persson, Mikael, 195 ... (8)
Löfgren, Nils, 1969 (8)
Lundberg, Peter (7)
Wigström, Lars (7)
Lindahl, Bertil, 195 ... (7)
Sörnmo, Leif (7)
Stegmayr, Bernd (7)
Andersson-Svahn, Hel ... (7)
Blennow, Kaj, 1958 (6)
Ortiz Catalan, Max J ... (6)
Theodorsson, Elvar (6)
Zetterberg, Henrik, ... (6)
Schwenk, Jochen M. (6)
Nilsson, Peter (6)
Landegren, Ulf (6)
Seoane, Fernando, 19 ... (6)
Nilsson, Johan (6)
Mardinoglu, Adil, 19 ... (6)
Gharehbaghi, Arash (6)
Isaksson, Hanna (6)
Johannsson, Gudmundu ... (6)
Cinthio, Magnus (6)
Dahlbäck, Björn (6)
Ashton, Nicholas J. (6)
Wårdell, Karin (6)
Sellergren, Börje (6)
visa färre...
Lärosäte
Göteborgs universitet (232)
Lunds universitet (227)
Linköpings universitet (195)
Chalmers tekniska högskola (195)
Uppsala universitet (171)
Kungliga Tekniska Högskolan (156)
visa fler...
Karolinska Institutet (122)
Umeå universitet (104)
Örebro universitet (71)
Malmö universitet (57)
Högskolan i Borås (53)
Karlstads universitet (42)
Linnéuniversitetet (33)
Stockholms universitet (32)
RISE (16)
Sveriges Lantbruksuniversitet (16)
Jönköping University (15)
Högskolan i Skövde (12)
Högskolan Kristianstad (10)
Mälardalens universitet (8)
Mittuniversitetet (8)
Luleå tekniska universitet (7)
Högskolan i Halmstad (5)
Högskolan Dalarna (5)
Högskolan i Gävle (4)
Högskolan Väst (3)
Blekinge Tekniska Högskola (3)
Södertörns högskola (1)
Gymnastik- och idrottshögskolan (1)
Sophiahemmet Högskola (1)
Röda Korsets Högskola (1)
visa färre...
Språk
Engelska (1257)
Svenska (29)
Ungerska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (1285)
Naturvetenskap (245)
Teknik (221)
Samhällsvetenskap (35)
Lantbruksvetenskap (8)
Humaniora (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy